R I AT
US 20020049760A1
a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2002/0049760 A1

Scott et al. (43) Pub. Date: Apr. 25, 2002
(54) TECHNIQUE FOR ACCESSING Publication Classification
INFORMATION IN A PEER-TO-PEER
NETWORK (51) TN CL7 e GOGF 7/00
(52) US. Clo e 707/10

(75) Inventors: Adrian C.H. Scott, San Francisco, CA
(US); S. Mitra Ardron, Fairfax, CA

(US) (7) ABSTRACT
Correspondence Address:
BEYER WEAVER & THOMAS LLP The present invention provides an improved technique for
P.O. BOX 778 accessing information in a peer-to-peer network. According
BERKELEY, CA 94704-0778 (US) to specific embodiments of the present invention, each file

accessible in the peer-to-peer network is assigned a respec-

(73)  Assignee: FLYCODE, Inc. tive hash ID or fingerprint ID which is used to describe the

. contents of that file. Files in the peer-to-peer network may be

(21)  Appl. No: 09/883,064 identified and/or accessed based upon their associated hash

(22) Filed: Jun. 15, 2001 ID values. In this way it is possible to identify identical files

stored in the peer-to-peer network which have different file

Related U.S. Application Data names and/or other metadata descriptors. Since the content

of all files having the same hash ID will be identical, an

(63) Non-provisional of provisional application No. automated process may be used to retrieve the desired
60/212,177, filed on Jun. 16, 2000. content from one or more of the identified files.

Peer 2

102b

Peer 3
Peer 1 102¢
1023 Internet
104
Peer N
102n
Server
110
Directory/Database
112

100



US 2002/0049760 A1

Patent Application Publication Apr. 25,2002 Sheet 1 of 18

| "B

00—

{1
aseqejeq/AioaaQq

oLl
Joneg

01

JauIB)U|

ecol
| 199d




US 2002/0049760 A1

Patent Application Publication Apr. 25,2002 Sheet 2 of 18

8p0o) HSYH

yoz—"

ONIAOD HSVH

0010L0L0LOLOOLOLOOLO
10L00L0LOLOOLOOLOLOL
0101000000100L00L 100
+11110001100L0L0LO0O
10L0LLOLOLOLOLOLIOLE
+00001001001L000L00L0

vV 9|4

-

Nowt\\

ecoc



US 2002/0049760 A1

Patent Application Publication Apr. 25,2002 Sheet 3 of 18

(u/A) ¢eunuo

SSa.ppy
HomjaN
T T

—» (i 498d

SIERE

oge—"

di yseH

al Jeed
ejepels|y

sweN 9|14

- INENET

oze—"

adA % )

221G

» dl YyseH

LV QR g RCT |

oLe—"




US 2002/0049760 A1

Patent Application Publication Apr. 25,2002 Sheet 4 of 18

a¢ bt .
u gssalppy d| givad
g« gsseuppy di| ziwed | | —os¢
> A L SSaIppY di iJead
9/t (X3 ¥i€
ANIINO | NOILYDOO1 | al ¥33d
d|qe] 19sN)
owmq 0se
elulojijed d o)
Zlesd Ojul }SUNO | Ul [910H] 0pOD USEH // Badwi solAq d apoD ysen «+21G¢
|2JoH \/ A g
¢load oI4 21SniN ‘eluioyied | epod yseH // Badf SoMAq W apo) yseH | <[ 4dlse
Al
eluiolied v R \
Head so|be3 |210H apoY yseH » gdw saiq u apoo yseH | <] EILGE
89¢ 99¢ 29¢ ¥9¢€ 8G¢ 9G¢ $GE
aly3ad |VLIVAVIIW| IWYN N4 | al HSYH ddAL JzIs al HSvH
9|qe sjuswalg Aicyoeng ang




US 2002/0049760 A1

Patent Application Publication Apr. 25,2002 Sheet 5 of 18

Vi 014

\.omv

o16¥

q1Gv

SpIA Aun:0 uonenpe.b Badw sayiq d ouooo.._mm_._ D94
. alnoid d
soid Aun:o Kepuuig Bad( S9JAq W 8poo ysey q o4
oisnu Aun:o gdw sajAq u apo o<c seyy V 9ji4
6G¥ 85y ISY oS¥ Yoy 417
NOILVOOT | VLVAvil3n ddAl 3ZIS di HSVH | JWVN 3714
o|qel ol

e1Gy



Patent Application Publication Apr. 25,2002 Sheet 6 of 18 US 2002/0049760 A1

/—400

C

Peer Client File Hashing Procedure

D)

) /—402

Identify selected local files to be made
available for file sharing

403

A 4
L Determine Hash ID for each identified file j

A

404

Send local directory 450 or changes
thereto to central directory 112

. u

Hash ID already
exists in directory?

406
{

Update File Table in central
No—>| directory to include identified file
information, including Hash ID

Yes

Element already
exists in directory?

Yes

¢ f409

Update existing name and metadata
with current values as necessary

v

Done )«

No—»

408
L

Update Elements Table to
include the new file name and
other metadata for this file as

described by this particular peer

Fig. 4B



Patent Application Publication Apr. 25,2002 Sheet 7 of 18 US 2002/0049760 A1

450
( Peer Client File Hashing Procedure )

A 4

Identify locations which include files to be made
available for file sharing

l /454
New files identified?

/—452

’
AN

I
Yes
¢ /456
Determine Hash ID forreach new identified file

\l [458

Update File Table to include identified new file
No information, including respective Hash ID

Fig. 4C



US 2002/0049760 Al

Patent Application Publication Apr. 25, 2002 Sheet 8 of 18

eonep Jead Buysanbai,
1e pajeniui A)jeolewoiny

sesn Aq paren (2)

panigoas jsenbai yoJeas @
ysenbal yoreas sajeiul 1osn @

G-

suoieo0| Jaad wody
(s)ayy poyosjes BuinsLyal
Joy (s)ainpasoud ayeniuy

(s)ep paoajes 10} suolyeosol Jaad o 81

l¢ (ssauppe d| 1934 ‘ssaippe d| zload ‘69) ﬁmw

Aoy se
al yseH Buisn ajiy pajosjas yoes
JO SU0IED0] BUIj-UO 10} g YoIeas

©-

o

pr
«

(s)oly peposles Jo sl yseH

=
o/

9ZIG Ol .

1SI] WOJ Saljue
2I0U JO BUO odAL a4 .
S)08|9s J9s) EIEPEISN o
SWEeN Oli4
(losn 0} 9|qISIA JOU) ] YSBH

sy} Buiyolew jo 1si| ajesausb
. pue jsonbai $s00014

(Letutope) [91oH, 6°9)

G

sa|y Bujyojew Jo a:lll@

v

€

}senboy yoiesg

809
¢load

906
zlosd

705
Llead

»
»

205
lanlag




US 2002/0049760 A1l

Patent Application Publication Apr. 25, 2002 Sheet 9 of 18

JUBIPOGLIT LIGOY-PUNOY

v9 614

‘019
paseds uondBUUDY
siojoe} Ajuuixoid
awn-Buid
}S1] WO UoNISIBS WOPUEY

1S4 UORROO) Bl 4O 1BPIO »
:uodn paseq
ag Aew a0insp J9ad JO UOKIIIOG "saIA8p
Jaad pajoajas o )sanbai o)) sajepu)
Alfeonewoyne LJaad Je sseo00id Jualld

@

805
cload

(syeudoidde y)
ajge] ajid |evol sjepdn
‘Alje00] ey} pajsanbal aio)g mw
W ai yseH o} Buipuodsailod m
m 8l pajsanbau Jo sjuajuUod 3)ji4
al yseH
0} Bulpuodssii00
6l ol [ed0} Ayuap!
< (Q1 yseH) iy
N ysenbay 8|14 ,mv

905
Zlead

Li8ad je ojqejear
MOU sI (] yseH  -»|
8|l 1ey) Janias AON

$0S
L

208
Janeg




US 2002/0049760 A1

Patent Application Publication Apr. 25, 2002 Sheet 10 of 18

JUBWIPOGLIT UIGOY-PUNOY

g9 b1

anisuodsal-uou Ziead wE:mm<®

‘00
paads uoi2oduUUoD

$J0J08) APUIXOId
swp-buid

15| W0y UORIAIBS Wopuey
1SIl UOHEDO] B JO 1BPIO

:ucdn paseq aq Aew adiasp
10ad 10 U0|109|9S "8dinap
1oad pooojas 0} 1senba.
o))} sajenul A|leojewone

L1894 je ssasoud jusyD

o

al yseH o} Buipuodsaul

¢

Jk£ T &/

ai yseH
0} Buipuodsanod

|} [eoo| Ajuep)

9|l paysenbal Jo syuajuod

(a1 useH)

80S
elo9d

(eyeudosdde y)
Iqel 8ji4 |edo) ayepdn

‘K||eo0) 8|y paysanbail aio1g

02

e

m&

&,

ald

ysenbay 9|14

Ao

.

905
ciovd

2198 10}
pajoa)ap noowi |

(a1 yseH)
1sanbhay sji4

)
hs4

L1898 1e 9jqepee

Mmou si | useH —»

aly Jey) Jon1es AJIJON

¥0S
L1884

205
loniag



Apr. 25,2002 Sheet 11 of 18  US 2002/0049760 A1

Patent Application Publication

-sinad sjdynw ssoioe peojiom Bupueleq
10} Wisiueyasw sandepe st enbiuyos) Buiwlems

/B4

(ejendoidde >06 9|qe a4 [e20] arepdn
‘Afieo0] a)1 pajsenbal 2108

‘SjuUBUOD 9l jeiped paAlgoai

Buisn a)1; peysanbal Joniisuooay

(u 0y | se¥fg)

"0INBP | 1894
1e pawioyad suopesedo
0} Bugesy iteyep alow
104 O pue 6 Sambid 98g

dl yseH
0] Buipuodselioo

oll} |e20] Aji3usp|

2o
)
sjuSuoD 9jy [eied Ajuo Bulpuas ey
Ja)e 8AISU0dSaI-UoU ZJoad awnssy
809
¢€lovd

SJUBJU0D Bl |BILEd

(uz 0} L+u salkg)

@9~ >
- SjuLju0d B} [ented
al YseH
0} mc_cco\namotoo
a1y jea0] Ajjusp|
@ > [ed0]
| (ug = |1Ag puz ‘u+] = 83Ag Mess ‘al YseH)
‘ 1s8nbay ejid [efed J¢
(u = @)Ag puz ‘| = 8}Ag HelS ‘Ql UseH) €2
jsenbay oI |efyed
@.Od 8 aABY LYoum s1ead Jo Jequinu Jospue ﬁlolw.
¢4i99d paAsuial 8 0} 8| JO 3Z|S ‘SE YoNs siajeweled uodn ld9ed

paseq pauiuslap Ajediweudp 1o Ajfeagels ag Aews u




US 2002/0049760 A1

Patent Application Publication Apr. 25,2002 Sheet 12 of 18

-1eBeuepy unyd Ag psuiejule
“ofi} padisep Joj dey Hunyo

w .@_m oow/

peAsuieY JON pue peubissy 10N = VN
poASLIISY 10N pue paubissy = YNV
paraL1oy pue paubissy =YY

VN ° 0. dVN | dVN Hv HUNY | ¥V =\

UNV

v

UNY

oY

L = "ONMunyd



Patent Application Publication Apr. 25,2002 Sheet 13 of 18  US 2002/0049760 A1

900 /930
Chunk Manager Chunk Manager
Executive Thread Worker Threads
\\
L 4 v 932
/" Init parameters: 7 o i Stant 5
/ e List of Peers ,’/902 i g art thread d
/ + HashIDoffile g «
g * _n=chunksize s : rWait for work assignment |
| .
i) 904 E 934 | 936
[ nftiate Worker Threads | --------=-- | {-»| Accept work assignment |
i A 4 938
X 906 !
\ PeerID 1} Request bdytes froFr'n Pe'%r
i Start Byte ¢ | corresponding to Peer ID:
5 Assign Cé\:&l‘(t?‘rrlgaIZeer iDto ---End Byte - Hash 1D
Hash [D Start Byte:End Byte

! /—908 " 040
[ Wait for received Chunks | Yes fe(igl.l;‘gé(q N
| ~

{ 910 L r——'
__________ en
| Accept Chunk le . | chunkto Report fallure
™™ Executive to Executive
Manager Manager,
including
912 942J Peer ID and
[T Update Chunk Map Chunk ID
' 914 (gaa
Select Unassigned >
L unassigned l«—Yes Chunks
A Chunk remaining?
k916 No 918

Unfinished
Chunks
remaining?

o5 )

Yes 920
¢ [
Select May be determined by
unfinished Chunk referring to Chunk Map
h 4 922 \
Terminate existng | Flg 9
assighment associated h

with selected unfinished
Chunk




Patent Application Publication Apr. 25,2002 Sheet 14 of 18  US 2002/0049760 A1

/—1 000
( Executive Peer List Manager Thread )
l /—1 002
Receive failure notice from
worker thread
,[ /1 004

Ideintify Peer ID associated with
non-responsive Peer

l /—1006

Update status of identified Peer ID
as being non-responsive

®

Fig. 10



Patent Application Publication Apr. 25,2002 Sheet 15 of 18  US 2002/0049760 A1

prm—y v
_ /\ ~—
¢))
. .
2 -
N XS
Ll
-
—_ ~
o ©
N1 0
Q T
L
o o
L ~
= > 9
o \
=
i
=
[
N ©®
[{o) ©

«”
i

55

7 %)
(08

2 Z | o
O (/p]

S (7]

L

il o

A =1 ¢
3 &

|



Apr. 25,2002 Sheet 16 of 18  US 2002/0049760 Al

Patent Application Publication

POE Ojqepeay Sajig| ZZE © auIuQ SIBS[IRMOASHEYM

SN
ﬁNwM«
R 5

et

8 0v¢
el
Iyl
oy 8ep

8 8va'L
BN ELLE
B 29°E
BN ELLE

ANELLE
as00y sl p{

- Hduruoiuo
WE'NOLNITI
~Q-uspisald
“hg -pawog
i - dpawn]
- uog g
Gadw BuojLi
Gadwuojuyy
"R LoD
TUrUolg
uojuiy
usiD

BRESE

Jupeg-gogoge

spoH 4

eNp 4

uouy3
uowiy

o

E

lowny 4

yomag




Apr. 25,2002 Sheet 17 of 18  US 2002/0049760 Al

Patent Application Publication

-~
o
o™
—

e Y itk PUO Snen qu

gy ore
g4 0re
TEpPEIL
84 +2g’|
aX 88¥
avl gva’L
L% A CLLE
M 249€
A ELLE
A €28
asoog  sal {1

OASHEYA, muE éc

Y W al]

1nR .m,aE .coﬁ__o
we'NOLNIMD

“Ljuouo-juepisad
“uojug g -fpawe]
“g] uouI) - dpawng
" HIRIdg - Uolg] (i

Badw-buoyuna
Badwuou)

Gadw swe -uoid]
Badw uouaiq
uou3

uolu3

t

128281

&

S x_w

2 el P ¥R b RO W TR AT DD M Lonoe B VTG F 2% 1

EiSesRac AR Sk s LA g

a&}




US 2002/0049760 A1

Apr. 25,2002 Sheet 18 of 18

- .n.mm_ coE__u ms h

_._.,m yilulil] cEc__u (
IAR'NOLINITD
Uo-uspisald

13 g -fpawog
"] - dpawo]

g - WOMI i

Baduruou)
IR ERIOMID
Badwruoyufiq

Uiy
uomID

3
i3

Lo s SRl ey
&) =
sﬁv«ﬁi&%&;

Patent Application Publication




US 2002/0049760 Al

TECHNIQUE FOR ACCESSING INFORMATION IN
A PEER-TO-PEER NETWORK

RELATED APPLICATION DATA

[0001] This application claims priority under 35 U.S.C.
Section 119(e) from U.S. Provisional Patent Application No.
60/212,177, filed Jun. 16, 2000, attached hereto as Appendix
E, which is incorporated herein by reference in its entirety
for all purposes.

BACKGROUND OF THE INVENTION

[0002] Over the past decade, there has been an explosive
growth in computer network technology, which has dramati-
cally changed the degree and type of information available
to users connected to computer networks, such as, for
example, the Internet. As information becomes more acces-
sible over local and wide area networks, new techniques for
file storage and distribution are developed. Currently, most
existing architectures for file distribution in a network
environment utilize centralized file storage and transfer
architecture, in which files are stored in central servers and
accessed by individual distributed client programs. How-
ever, as the files increase in number and size, file storage and
distribution from these central servers often becomes prob-
lematic.

[0003] One type of file sharing technology which
addresses some of the problems posed by centralized file
storage systems relates to distributed file storage systems,
such as those implemented in peer-to-peer networks. As
commonly known to one having ordinary skill in the art
peer-to-peer networks may be used for implementing dis-
tributed file sharing systems wherein selected files stored on
each peer network device may be made accessible to other
peer network devices in the peer-to-peer network. Accord-
ingly, peer-to-peer network architectures are highly scalable,
since files may be retrieved from many locations rather than
just one central location (e.g., a central server).

[0004] In recent years, there have been significant
advances in peer-to-peer network technology, particularly
with regard to the Internet. For example, peer-to-peer file
sharing applications such as NAPSTER™ and GNU-
TELLA™ now provide the ability for Internet users to
configure their computer systems to function as peer net-
work devices in a peer-to-peer network implemented across
the Internet. In this way, an Internet user is able to access
desired files which are stored at the computer systems of
other Internet users.

[0005] While this first generation peer-to-peer architecture
solved some of the problems associated with centralized file
storage, it also introduced new problems such as, for
example, file access, reliability, speed, security, etc. For
example, using peer-to-peer file sharing applications such as
NAPSTER™, shared files in the peer-to-peer network were
identified and retrieved based upon their file names. Thus,
for example, if a name of a file were misspelled, there was
no other way of identifying the file during a search. Addi-
tionally, if a peer which was currently involved in one or
more file retrieval operations went offline, the file retrieval
operations would fail. The requesting user then had to
discard the partial file contents and pick a new peer to
download from. Consequently, very large files were virtually

Apr. 25, 2002

impossible to retrieve since few peers remained online long
enough to complete such a large transfer.

[0006] 1t will be appreciated that there are numerous
issues relating to peer-to-peer network technology which
remain to be resolved. Accordingly, continuous efforts are
being undertaken to improve peer-to-peer networking tech-
nology in order to provide improved file storage, access, and
distribution techniques implemented over a data network.

SUMMARY OF THE INVENTION

[0007] According to different embodiments of the present
invention, methods, systems, and computer program prod-
ucts are disclosed for accessing information in a peer-to-peer
network. The peer-to-peer network includes a plurality of
peer devices and a database accessible by at least a portion
of the peer devices. Each of the peer devices is configured
to store information files, and is further configured to share
content from selected information files with at least a portion
of the other peer devices in the network. Each shared file in
the network has a respective fingerprint IID associated
therewith relating to its file content.

[0008] According to specific embodiments, files in the
peer-to-peer network may be identified and/or accessed
based upon their associated hash ID values. In this way it is
possible to identify identical files stored in the peer-to-peer
network which have different file names and/or other meta-
data descriptors. Additionally, since the content of all files
having the same hash ID will be identical, an automated
process may be used to retrieve the desired content from one
or more of the identified files. For example, a user may elect
to retrieve a desired file (having an associated hash ID)
which may be stored at one or more remote locations in the
peer-to-peer network. Rather than the user having to select
a specific location for accessing and retrieving the desired
file, an automated process may use the hash ID (associated
with the desired file) to automatically select one or more
remote locations for retrieving the desired file. According to
different embodiments, the automated process may choose
to retrieve the entire file contents of the desired file from a
specific remote location, or may choose to receive selected
portions of the file contents of the desired file from different
remote locations in the peer-to-peer network. Further, if an
error occurs during the file transfer process, resulting in a
partial file transfer, the automated process may be config-
ured to identify the portion(s) of the desired file which were
not retrieve, and automatically select at least one different
remote location for retrieving the remaining contents of the
desired file.

[0009] Additional objects, features and advantages of the
various aspects of the present invention will become appar-
ent from the following description of its preferred embodi-
ments, which description should be taken in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 illustrates a block diagram of peer-to-peer
network which may be used for implementing the technique
of the present invention in accordance with a specific
embodiment of the present invention.

[0011] FIG. 2 shows a block diagram of HASH coding of
a file in accordance with a specific embodiment of the
present invention.



US 2002/0049760 Al

[0012] FIG. 3A shows a block diagram of directory data
structures in accordance with a specific embodiment of the
present invention.

[0013] FIG. 3B shows a block diagram of an example of
specific data stored in the directory data structures in accor-
dance with a specific embodiment of the present invention.

[0014] FIG. 4A shows a block diagram of an example of
specific data stored in the peer directory structures in accor-
dance with a specific embodiment of the present invention.

[0015] FIGS. 4B and 4C illustrates flow diagrams of the
directory synchronization process between a local peer
directory and a central directory in accordance with a
specific embodiment of the present invention.

[0016] FIG. 5 illustrates a trace diagram of the technique
for searching files in accordance with a specific embodiment
of the present invention.

[0017] FIGS. 6A-6C illustrates a trace diagram of a file
retrieving technique in accordance with a specific embodi-
ment of the present invention.

[0018] FIG. 7 shows a trace diagram of another file
retrieving technique from multiple peers in accordance with
an alternative embodiment of the present invention.

[0019] FIG. 8 shows a block diagram of a chunk map for
the management of the retrieval of “chunks” of a file for the
file retrieving technique in accordance with the alternative
embodiment of the present invention.

[0020] FIG. 9 illustrates a flow diagram of the chunk
management technique across multiple worker threads for
the file retrieving technique in accordance with the alterna-
tive embodiment of the present invention.

[0021] FIG. 10 illustrates a flow diagram of the chunk
management technique when an unresponsive peer for the
file retrieving technique in accordance with the alternative
embodiment of the present invention.

[0022] FIG. 11 shows a specific embodiment of a peer
network device 60 which may be used for implementing the
technique of the present invention.

[0023] FIG. 12 is a diagram of an example of a screen shot
illustrating a user interface on a peer device in accordance
with a specific embodiment of the present invention.

[0024] FIG. 13 is a diagram of another example of a
screen shot illustrating a user interface showing a search
input field in accordance with a specific embodiment of the
present invention.

[0025] FIG. 14 is a diagram of the example of a screen
shot of FIG. 13 illustrating a selection of the search input
field in accordance with a specific embodiment of the
present invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0026] The present invention provides an improved tech-
nique for accessing information in a peer-to-peer network.
According to specific embodiments of the present invention,
each file accessible in the peer-to-peer network is assigned
a respective hash ID or fingerprint ID which is used to
describe the contents of that file. According to one embodi-

Apr. 25, 2002

ment, a conventional hash or fingerprinting algorithm may
be used to analyze the contents of a selected file, and
generate a unique hash ID or fingerprint ID which may be
used for identifying the specific contents of that file. The
hashing algorithm is designed such that no two files having
different file content will have the same hash ID. However,
files having identical file content will have the same hash ID.
In one implementation, the file name and metadata associ-
ated with a file are not included in the computation of the
hash ID for that file.

[0027] According to specific embodiments, files in the
peer-to-peer network may be identified and/or accessed
based upon their associated hash ID values. In this way it is
possible to identify identical files stored in the peer-to-peer
network which have different file names and/or other meta-
data descriptors. Additionally, since the content of all files
having the same hash ID will be identical, an automated
process may be used to retrieve the desired content from one
or more of the identified files. For example, a user may elect
to retrieve a desired file (having an associated hash ID)
which may be stored at one or more remote locations in the
peer-to-peer network. Rather than the user having to select
a specific location for accessing and retrieving the desired
file, an automated process may use the hash ID (associated
with the desired file) to automatically select one or more
remote locations for retrieving the desired file. According to
different embodiments, the automated process may choose
to retrieve the entire file contents of the desired file from a
specific remote location, or may choose to receive selected
portions of the file contents of the desired file from different
remote locations in the peer-to-peer network. Further, if an
error occurs during the file transfer process, resulting in a
partial file transfer, the automated process may be config-
ured to identify the portion(s) of the desired file which were
not retrieve, and automatically select at least one different
remote location for retrieving the remaining contents of the
desired file.

[0028] Referring now to FIG. 1, a high level view of a
peer-to-peer network 100 is illustrated in accordance with a
specific embodiment of the present invention. The network
100 includes a plurality of peer network devices 102a-1027,
and at least one central server system 110. According to one
specific implementation, the peer devices 102a-102#n are
communicably connected to each other and to the central
server 110 via the Internet 104. The peers may communicate
with each other and the server via the http protocol or via a
private protocol, the former being preferable to minimize the
effects of various firewalls that may exist between any given
peer device and the Internet 104.

[0029] The server 110 preferably includes software or
firmware that handles communication between the peer
devices 1024a-102n and the central server 110, and that
performs specific logical operations on the directory 112 on
the server. According to one specific implementation, the
directory 112 may be stored in a single relational database,
but permanent storage may also be accomplished by an
object database, a directory server, or multiple databases.

[0030] Files 202 that are to be shared are only stored on
the peer devices 102a-102x. The directory 112 stores infor-
mation about the files (e.g., HASH ID, filename, metadata,
size, type, etc.) but not their contents. In addition, the
directory 112 stores information about the peer devices



US 2002/0049760 Al

themselves (e.g., Peer ID) and most importantly, which peer
devices the files 202 exist on at any given time.

[0031] Briefly, it will be appreciated that file 202 may
contain any type of stored information. These include, for
example, jpeg, mpeg and mp3.

[0032] Turning now to FIG. 2, the unique footprinting of
a file 202 is illustrated in accordance with one specific
embodiment of the present invention. In particular, the
process by which a file 202 may be uniquely identified is
through the application of HASH code 204. Each peer
device 102a-102n that wishes to publish a file on the
peer-to-peer network 100 first computes the HASH code 204
of that file. The HASH code 204 may be computed via
conventional algorithms which generate a unique identifier
based upon the content of a particular file. Examples of
fingerprinting or hash code algorithm which may be used in
conjunction with the technique of the present invention
include, MD5 (described in RFC 1321, and attached hereto
has Appendix A), and Keyed SHAL (described in RFC 2841,
and attached hereto has Appendix B). Each of these refer-
ences is incorporated herein by reference in its entirety for
all purposes.

[0033] According to one specific implementation, MD5
(See Appendix A) may be used to guarantee that the HASH
code is unique for each different file, even when two files
differ by as little as one bit. Other algorithms may also be
used such as, for example, Keyed SHAI (See Appendix B)
which mathematically characterizes the audio or visual
waveforms of the content of the file and creates a unique
code representation of that file. According to a specific
embodiment, the filename, time/date stamps, and any other
meta-data about the file are not included in the computation
of the HASH code. Different peers, or even the same peer,
can refer to or describe what is in fact the same file content
by different names. The desired files are more likely to be
found, as different users may search for files using different
names, descriptions, or other characteristics, although the
file content is identical. Such unique ID association allows
each user to name and describe a given file in the manner
most relevant to them.

[0034] According to one specific implementation, the cen-
tral directory data 300 may be stored in a relational database.
FIG. 3A illustrates three of the central tables in the directory
data structures 300: the file directory table 310; the elements
table 320; and the users table 330. The file directory table
310, for example, contains information about the file con-
tents only, including the HASH code or ID, the size, and the
type (video, music, image, etc . . . ). Other information
specific to the contents of the file may also be stored in this
table. The elements table 320, on the other hand, contains
descriptive information or meta data about each file as
entered and maintained by each individual user. This ele-
ments table 320 also includes foreign keys Hash code ID and
Peer device ID that points to the files 310 and users tables
330, respectively. The users table 330 contains information
about each user and his/her peer device 102a-1027n. The
users table also maintains the systems current knowledge as
to which user is currently connected to the peer-to-peer
network 100.

[0035] According to one specific embodiment, the rela-
tionship between the three tables of FIG. 3A can be defined
such that each user can have many files and each file can be

Apr. 25, 2002

owned by many users. In addition, each user can have their
own individual description of each file and may possibly
describe the same file in more than one way, although the file
content, and thus, the HASH coding are identical.

[0036] In one embodiment, should a file be deleted by
every user that ever had them, there will be no record in the
elements table 320 of that file but a record of that file’s
existence will remain in the file directory table 310.

[0037] As best viewed in FIG. 3B, a specific example is
diagrammed which illustrates how a number of files, their
descriptions, and the users that own them might be repre-
sented in the directory database 112. In file directory table
350, for instance, the HASH ID 354, the file size 356 and file
type 358 are categorized and stored in the central server 110
for each particular file 351a-351c. Correspondingly, in the
elements table 360, the HASH ID 364, the file name 362, the
metadata 366 and the peer Id 368 are categorized and stored
as well. Finally, in user table 370, the Peer ID 374, the
address location 372 and the “online” determination, are
categorized and stored on the server.

[0038] File 351a, for example, refers to a specific file
whose HASH code is “A,” whose length in “n” bytes, and
whose type is “MP3.” Two users, “Peer 1” and “Peer 2” each
have a copy of this file 351a. Peer 1 has named file 3514 as
“Hotel California” in the file name 362 and described it as
“Eagles” (in this case the name of the artist that recorded that
song) in the metadata 366. Peer 2, in contrast, has named file
351a as “California, Hotel” in the file name 362 and
described it simply as “Music File” in the metadata 366.
Peer 1 and Peer 2 are both currently online, so that any other
peer wishing to obtain either “Hotel California” or “Cali-
fornia, Hotel,” both of which ultimately have HASH code
“A”, will have two choices as to which machine to obtain it
from.

[0039] Each peer 102a¢-102x in the peer-to-peer network
100 maintains their own local directory of what files (e.g.,
451a-451c) it has available. In one particular embodiment,
this directory may be stored as a local XML file for easy
exchange with the server 110 over internet 104. FIG. 4A
illustrates the contents of a local directory on a specific peer.
The local file table 450 contains a record for each file
451a-451c. Each file may be described by its filename 452
(which may be subject to the constraints of the local oper-
ating system as to permitted characters, format, and length),
a HASH ID 453, a file size 454, a file type 457, file meta data
458, and a location or folder path 459. The latter facilitates
the peer device to quickly locate the file on the local disk
when another peer device requests it.

[0040] Other files may be added to the local peer directory
whenever the user drags them into one or more specific
folders on the local machine. Files may also be deleted from
the local directory when they are deleted from those folders
or moved out of the specific directories. Alternative imple-
mentations may use different business rules and user inter-
face processes to specify when a file becomes available for
sharing.

[0041] To determine what files are available and where
they may be available in the central directory 112 so that
they can readily be searched by any peer 1024-1027, a
directory synchronization process is necessary. Applying
this technique, it may be the responsibility of each peer



US 2002/0049760 Al

1024-102# in the network 100 to send their list of files they
have available, at least periodically, along with any changes
to that list as they occur, to the central directory 112.

[0042] Referring now to one specific implementation,
FIG. 4B shows the directory synchronization process
between the local peer directory 450 and the central direc-
tory 112 commencing at operation 400. Initially at operation
402, the selected local files to be made available for file
sharing are identified. The HASH code of each file to be
shared (if it has not already been done previously or if a file
has changed for any reason) is computed in operation 403.
Once the HASH code for each new or changed file has been
computed, the entire local directory 450, or alternatively
only changes and additions to the local directory, are trans-
mitted to the central server 110 in operation 404 via the
internet 104. The central server 110 then proceeds to syn-
chronize each individual file with the central directory 112.
The first central directory operation 405 checks to see if a
file with that particular HASH ID already exists in the file
directory 310 of data directory structure 300 (FIG. 3A). If
it doesn’t, operation 406 is performed to add the new file to
the central directory 112. In either case, the system now
proceeds to operation 407, which is to check to see if a
record exists in the elements table 320 for this particular file
and user combination. If it does not, operation 408 is
performed to add the filename, meta data, and peer ID to the
elements table. If an element already existed for that user ID
and file ID in the elements table 320, that record is checked
for any required changes and updated as necessary. In any
event, the new data coming from the peer 102a-102# takes
precedence over corresponding existing data in the central
directory 112.

[0043] FIG. 4C further illustrates an alternative embodi-
ment process of adding new files into the local directory 470.
This file addition process may be performed whenever a new
location (a file, several files, or a folder containing several
files) is added to the list of locations available for file sharing
or whenever a new file is added to an existing shared folder.
Whenever a new file is identified in operation 474, its HASH
code is immediately determined in operation 476. The local
directory 450 is updated in operation 478 with the particular
information for that file, including its filename, HASH ID,
size, and location on the peer device.

[0044] FIG. 5 illustrates the process of searching for files
according to one specific implementation. When a request-
ing peerl (504) searches for a fall or partial filename or a
particular keyword, the peer software sends the search
request to the central server 502 in operation (1). The central
server 502 processes this request and generates a list of
matching files at operation (3), returning it to the requesting
peerl (504) in operation (5). The peerl (504) displays only
the relevant information to the user, who then selects one or
more files to retrieve in operation (7). The requesting peerl
(504) then sends the HASH ID of one or more files to be
retrieved to the server 502 at operation In operation (11), the
server identifies zero, or one or more “on-line” locations
(addresses) at which the requested file(s) may be found. The
list of HASH Ids and matching locations is returned to the
requesting peerl (504) in operation (13). Finally, in opera-
tion (15), the requesting peer initiates the procedure to
retrieve the selected file(s) from the locations provided by
the server 502, the operations of which are described below.

Apr. 25, 2002

[0045] In one embodiment, the returned list in operation
(13) may be limited to a maximum number of locations for
each file, since in practice a file can usually be reliably
retrieved from a relatively small number of locations. In an
alternative embodiment, the server 502 may have returned
the possible locations of each file with the results of opera-
tion (5). This would be beneficial by virtue of saving the
second query to the server in operation (9) but would be
expensive since locations would have to be found and
transmitted, even for files that are not ultimately desired. In
addition, the locations an available file may change in the
intervening time between the original search and the selec-
tion of particular files to retrieve.

[0046] Once a list of locations for a file has been identi-
fied, the requesting peerl (504) can choose a location from
the list (assuming there is more than one location) using any
number of different techniques. The requesting peerl (504)
can just pick the first location from the list, pick a location
at random, or use some heuristic algorithm to find the “best”
location to retrieve from. This may involve “pinging” each
location to determine its relative distance on the network
100 from the requesting peerl (504), or requesting a 1024
byte packet from each location to see which one can deliver
bytes fastest. Such heuristics may also be useful to see which
peers the requesting peer can complete a connection to. It
may be impractical for the server 502 to know which peers
can communicate efflciently with what other peers at any
given time, since the server may not have sufflcient knowl-
edge of the topology of the network 100 or of the trafflc
loads that exist on it at any particular time.

[0047] In FIG. 6A, in accordance with one specific
embodiment, once the requesting peerl (504) has chosen a
first location to start retrieving the file from (e.g., peer2
(506) in this case), the requesting peerl makes a request at
operation (17) to peer2 (506) for a file that has the desired
HASH ID. Peer2 (506) then identifies which file in its local
directory corresponds to the desired HASH ID, for example,
by performing a lookup or search in its local directory 450
at operation (19). If the requesting peerl (504) and peer2
(506) can reliably communicate, peer2 transmits the con-
tents of the requested file to the requesting peerl at operation
(21). Once the file has been successfully retrieved, the file is
stored locally in operation (23).

[0048] The name and meta data attached to the file at this
point will be that which was originally selected in the search
results in operation (5) of FIG. 5. This name and meta data
may not necessarily be the same as the name and meta data
attached to the file by peer2 (506). Finally, in operation (24),
the requesting peerl notifies the server 502 that it has a copy
of the file, in this way potentially becoming a fulfilling peer
for a subsequent request for this same file. Furthermore, this
final message from the requesting peer can be used by the
server to log successful file transfers, helping operators
monitor the efflciency of the network 100.

[0049] In some situations, such as the presence of fire-
walls, proxy servers, or other network devices, or the fact
that the fulfilling peer is no longer online, the first fulfilling
peer2 (506) may not answer a request for a file. FIG. 6B
illustrates this situation, in one specific implementation. If
the fulfilling peer2 (506) does not respond within a nominal
timeout interval, the requesting peerl (504) will select the
next location Peer3 (508) from the list of available locations



US 2002/0049760 Al

determined in operation (13) of FIG. 5, using any one of a
number of heuristic algorithms to do so. Assuming in this
case that Peerl (504) and Peer3 (508) can communicate,
Peerl will send a request for the file with the specified
HASH ID to Peer3 in operation (27). Next, Peer3 will find
that file on the local peer device in operation (29), and will
transmit the contents of the requested file to Peer 1 in
operation (31). Once the file has been successfully retrieved,
the file is stored locally in operation (33). Finally, in opera-
tion (34), the requesting peer (504) will notify the server 502
that it now has a copy of the file.

[0050] According to one specific implementation, the
retrieving of a file from one fulfilling peer that is interrupted
for any reason may be resumed from another peer that is
online and that has that file. FIG. 6C illustrates the situation
where a file may be partially retrieved from the first fulfilling
peer2 (506) in the list of locations determined at operation
(13) of FIG. 5. After a time, the first fulfilling Peer2 (506)
is no longer providing the contents of the file to the request-
ing peerl (504) at operation (21a). The requesting Peerl
(504) detects a timeout in operation (35)1 and then decides
to proceed with retrieving the remainder of the file from a
second fulfilling Peer3 (508). The requesting peerl (504) in
this case makes a request in operation (37) for the file with
HASH ID starting at a position one byte greater than the
amount of the file retrieved so far from the next peer in the
list of available locations; in this case Peer3 (508).

[0051] Tt is crucial that the file contents on the first
fulfilling Peer2 (506) and the second fulfilling Peer3 (508)
corresponding to HASH ID be identical in every respect,
since otherwise these parts of files may not fit together
correctly and result in a damaged or corrupted final file. This
is why it is essential to pick a HASH function that will
uniquely create a unique HASH code from a file’s contents.

[0052] Once the second fulfilling Peer3 (508) identifies
which file in its local directory corresponds to the desired
HASH ID at operation (39), the new fulfilling Peer3 (508)
returns the remainder of the file to the requesting peerl (504)
in operation (41). The application in the requesting peerl
(504) then joins the two chunks of the file together in
operation (43) and stores the file locally. In operation (44),
the requesting peerl (504) will notify and update the central
directory 112 of the server 502 that it now has a copy of the
file.

[0053] In an alternative embodiment, when the relative
ability of multiple peers to deliver files is not known, it can
be advantageous to retrieve different parts of a single file
from multiple peers 102a-102#x simultaneously. This may be
particularly true if the requesting peer has a faster connec-
tion than most of the fulfilling peers since the file can be
retrieved faster than any single fulfilling peer can deliver it.

[0054] According to one specific implementation shown
in FIG. 7, the requesting peerl (504) requests different
“chunks” of the desired file from two different fulfilling
peers—(506) and (508). The partial file requests in operation
(2a) and operation (2b) takes the form of the HASH ID of
the desired file, the starting position in the file, and the end
position in the file. In this example, the requesting peerl
(504) may request for chunks of size “n” bytes. The chunk
size “n” may be statically or dynamically determined based
upon parameters such as, size of file to be retrieved and/or
number of peers which currently have the file available. The

Apr. 25, 2002

first partial request in operation (2a) may be for the first “n”
bytes goes to peer3 (508), starting a byte no. 1 and ending
at byte no. n. The second partial request in operation (2b)
may be for the second “n” bytes goes to peer2 (506), starting
a byte no. n+1 and ending at byte no. 2n. Each fulfilling peer
returns the requested part of the file to the requesting peerl
(504) in operations (8a) and (8b). In operation 43, the
requesting peerl (504) reassembles the chunks of the file
received from each peer in the right order into the actual file.
The requesting peerl (504) will then notify and update the
central directory 112 of the server 502 that it now has a copy
of the file which is not shown.

[0055] A file may be retrieved from multiple fulfilling
peers in parts or “chunks.” According to one specific
embodiment, it may be the responsibility of the requesting
peer to keep track of what chunks have already been
retrieved, what chunks are currently being retrieved, and
what chunks remain to be retrieved. FIG. 8 illustrates a
“chunk map”800 constructed by a “chunk manager” tool or
application in which a file has been divided into “m™ chunks.
Each chunk will typically have the same size, for example
“n” bytes, except for the last chunk which may have an odd
size since there may be no guarantee that the requested file
can be divided into a number of equal sized chunks. Accord-
ing to this specific embodiment, each chunk exists in one of
three possible states: AR=Assigned and Retrieved; ANR=
Assigned and Not Retrieved; and NAR=Not Assigned and
Not Retrieved. The chunk manager uses this state informa-
tion to determine which chunks are to be retrieve next. The
file is known to have been completely retrieved when every
chunk is in the “AR™ state.

[0056] In one specific example, a file whose size is 1.45
MB, for instance, is being requested. If the system has been
configured to use a value of n=100 kb, there will be m=15
chunks, each of size 100 kb, except for the 15" chunk,
whose size will be 50 kb.

[0057] According to one specific implementation, the
chunk manager can assign the retrieval of any one chunk of
a file to a worker thread (i.e. Peerl-PeerN). Multiple worker
threads may be running in parallel, each retrieving a distinct
chunk of the file. The chunk manager may employ a variety
of techniques to assign chunks to retrieve and peers to
retrieve from to different threads. In one embodiment, the
chunk manager assigns “p” chunks sequentially to “p”
individual threads. Typically, p=m, the number of chunks
available, although an alternative may be to use more
threads than there are chunks and to simply terminate the
surplus threads that are not finished when the entire file has
been retrieved. The number of threads that can be run in
parallel may be constrained by system resources available
on the peer device, by operating system constraints, or for
any other reason.

[0058] FIG. 9 illustrates one specific embodiment where
a chunk manager executive thread at operation (900) man-
ages the efforts of multiple worker threads. The executive
thread starts with initial parameters at operation (902)
including a list of peers that have the file with HASH ID that
is to be retrieved, as well as the chunk size “n” to be used
in retrieving. Alternatively, the chunk manager may compute
its own value of n based on the number of peers available
and the size of the file.



US 2002/0049760 Al

[0059] The exccutive thread’s first task at operation (904)
is to launch a number “p” of worker threads. Each worker
thread starts up in operation (932) and waits for an assign-
ment in operation (934).

[0060] The executive thread assigns a chunk to each
available worker thread in operation (906). Each unit of
work may be characterized by the HASH ID of the file to be
retrieved, the peer to retrieve it from, and the start and end
positions in the file. Each worker thread accepts a work
assignment in operation (936), and then makes a request to
the assigned peer for the assigned chunk in operation (938).
This request includes the HASH ID of the file and the start
and end positions in the file. Meanwhile, the executive
thread waits for chunks to be received in operation (908).

[0061] A query is performed at operation (940) about
whether or not the desired chunk has been completely
received. If “YES”, when a worker thread has completely
received a chunk, it sends that chunk or preferably, a
reference to the location of the chunk in memory or on a
storage device, to the chunk manager in operation (942). The
chunk manager accepts the chunk at operation (910), and
updates its chunk map 800, marking a i the received chunk
as having state “AR” in operation (912).

[0062] If the query performed at operation (940) is
answered with a “NO”, the failure is reported to the execu-
tive manager at operation (944). This reported information
will include the HASH ID of the file to be retrieved, the peer
to retrieve it from, and the start and end positions in the file
of the chunk not retrieved.

[0063] At this point, regardless of the query at operation
(940), the worker thread that has just finished returns to
operation 934 and waits for another assignment. The execu-
tive thread examines its updated chunk map in operation 914
to see if there are any unassigned chunks (state “NAR”)
remaining. If there are, it selects one unassigned chunks in
operation (916) and assigns it to a free worker thread in
operation (906).

[0064] If there are no unassigned chunks, the executive
thread may decide to select an existing assigned, but not yet
fully received “ANR” chunk, for reassignment in operation
(920). This decision may be made based upon a variety of
factors, including the current rate of retrieving of unfinished
chunks, the availability of additional worker threads or
peers, or the relative retrieve speed of available peers. If an
assigned, but unfinished chunk is selected for reassignment,
the existing worker thread assigned to that chunk has its
assignment terminated and becomes available for reassign-
ment at operation (922). The chunk it was working on is now
marked as “NAR” and is ready for reassignment in operation
(906).

[0065] In one specific embodiment, a specific peer may be
attached to a specific worker thread for the duration of the
process. Worker threads that finish sooner may get new work
assigned to them, with that new work being targeted to peers
that are faster at delivering chunks of the file. Should a peer
fail to deliver a chunk in a timely manner, it may be removed
from the list of available peers and the thread may request
a new peer to interact with. The delivery speed of various
peers may vary over time, so that what was a fast peer at the
beginning of the process becomes a slow peer towards the
end or vice-versa. Since new work tends to go to threads that

Apr. 25, 2002

are finishing their work fastest, the system self-optimizes the
retrieve to deliver the file as fast as possible.

[0066] By way of example, in the previously discussed file
of FIG. 8 where the 1.45 MB file is divided into m=fifteen
(15) chunks of n=100 kb (the ;sth chunk being 50 kb), ten
(10) peers are online and have the file with HASH ID
available. The executive manager decides to use p=cight (8)
worker threads to retrieve the file. If every chunk retrieved
is successful and is performed in the same amount of time,
each thread will retrieve two 100 kb chunks, except for the
8'" thread, which will only retrieve one 100 kb chunk, and
for the 7% thread, which will retrieve a 100 kb chunk
followed by a 50 kb chunk.

[0067] In practice, some threads will be assigned to unre-
sponsive peers and will fail to retrieve their chunks the first
time. The executive thread may mark these peers as unre-
sponsive and assign new peers to the available threads.
Furthermore, some peers may be much faster than others at
retrieving chunks. In that case, they will become available
for retrieving new chunks earlier, the result being that one
thread may retrieve five (5) or six (6) chunks while the
remainder only retrieve one or two.

[0068] Referring now to FIG. 10, one specific embodi-
ment of a possible process for dealing with peers that fail to
respond for chunks of a file is illustrated. The executive
thread receives a failure notice from a worker thread in
operation (1002). It then sets the measured speed of the
corresponding peer to zero (0) in operation (1004). Subse-
quent peer assignments may use a ranking of measured
speeds to pick the fastest available peers rather than the
slower, or non-responsive ones. According to a specific
embodiment, each peer may be assigned an average or
nominal speed prior to the start of file retrieving. The speed
of each peer would then be set to the actual speed as chunks
are actually delivered. Since delivery speed may vary on a
minute-by-minute basis, the most recent measurement of
peer speed may be deemed to be authoritative. At operation
(1006) the status of identified peers as being non-responsive
are updated.

[0069] FIG. 12 illustrates one example of a user interface
1200 on the peer device according to a specific embodiment
of the present invention. The user interface, for instance,
may be implemented as an application running on the
Microsoft Windows operating system.

[0070] In one example, as viewed in FIG. 13, the user
interface 1200 includes a search input field 1300 where the
user can search for files. In this example the search term
“clinton” is entered in field 1300. Files that are found are
displayed in a search results list 1301.

[0071] The user can then select one or more files from the
list 1301 of search results, as shown in FIG. 14, to retrieve
from other peers. In this instance, the mpeg file “clintong-
.mpeg”1400 is highlighted.

[0072] 1t will be appreciated that the technique of the
present invention provides improved peer-to-peer network-
ing technology for enabling faster and more reliable down-
loads, using multiple peers in a round-robin or simultaneous
retrieving mode, and/or being able to resume failed down-
loads from different peers. According to a specific embodi-
ment, at least a portion of these features may be imple-
mented by identifying files based on their contents rather



US 2002/0049760 Al

than their file names. In this way it is possible to identify and
retrieve file content from one or more identical files stored
in the peer-to-peer network which have different file names
and/or other metadata descriptors.

[0073] According to a specific embodiment, the peer-to-
peer network of the present invention includes a central
directory, like Napster, but unlike Gnutella which uses a
distributed directory. However, it will be appreciated that the
technique of the present invention may be applied to both to
central directory systems as well as peer-to-peer, distributed
directory systems.

[0074] Other Embodiments

[0075] Generally, the peer-to-peer file sharing techniques
of the present invention may be implemented on software
and/or hardware. For example, they can be implemented in
an operating system Kernel, in a separate user process, in a
library package bound into network applications, on a spe-
cially constructed machine, or on a network interface card.
In a specific embodiment of this invention, the technique of
the present invention is implemented in software such as an
operating system or in an application running on an oper-
ating system.

[0076] A software or software/hardware hybrid implemen-
tation of the peer-to-peer file sharing technique of this
invention may be implemented on a general-purpose pro-
grammable machine selectively activated or reconfigured by
a computer program stored in memory. Such programmable
machine may be a network device designed to handle
network trafflc, such as, for example, a router or a switch.
Such network devices may have multiple network interfaces
including frame relay and ISDN interfaces, for example.
Specific examples of such network devices include routers
and switches. For example, the technique of the present
invention may be implemented on specially configured
routers or servers such as specially configured router models
1600, 2500, 2600, 3600, 4500, 4700, 7200, 7500, and 12000
available from Cisco Systems, Inc. of San Jose, Calif. A
general architecture for some of these machines will appear
from the description given below. In an alternative embodi-
ment, the peer-to-peer file sharing technique of this inven-
tion may be implemented on a general-purpose network host
machine such as a personal computer or workstation. Fur-
ther, the invention may be at least partially implemented on
a card (e.g., an interface card) for a network device or a
general-purpose computing device.

[0077] Referring now to FIG. 11, a network device 60
suitable for implementing the peer-to-peer file sharing tech-
niques of the present invention includes a master central
processing unit (CPU) 62, interfaces 68, and a bus 67 (e.g.,
a PCI bus). When acting under the control of appropriate
software or firmware, the CPU 62 may be responsible for
implementing specific functions associated with the func-
tions of a desired network device. For example, when
configured as a server device, the CPU 62 may be respon-
sible for analyzing packets, encapsulating packets, forward-
ing packets to appropriate network devices, processing file
search requests, maintaining shared file information across
the peer-to-peer network, etc. Alternatively, when config-
ured as a peer network device, the CPU 62 may be respon-
sible for initiating file search requests, retrieving file content
information from peer devices, performing hash coding
operations on selected files, etc. The CPU 62 preferably

Apr. 25, 2002

accomplishes all these functions under the control of soft-
ware including an operating system (e.g. Windows NT), and
any appropriate applications software.

[0078] CPU 62 may include one or more processors 63
such as a processor from the Motorola family of micropro-
cessors or the MIPS family of microprocessors. In an
alternative embodiment, processor 63 is specially designed
hardware for controlling the operations of network device
60. In a specific embodiment, a memory 61 (such as non-
volatile RAM and/or ROM) also forms part of CPU 62.
However, there are many different ways in which memory
could be coupled to the system. Memory block 61 may be
used for a variety of purposes such as, for example, caching
and/or storing data, programming instructions, etc.

[0079] The interfaces 68 are typically provided as inter-
face cards (sometimes referred to as “line cards™). Generally,
they control the sending and receiving of data packets over
the network and sometimes support other peripherals used
with the network device 60. Among the interfaces that may
be provided are Ethernet interfaces, frame relay interfaces,
cable interfaces, DSL interfaces, token ring interfaces, and
the like. In addition, various very high-speed interfaces may
be provided such as fast Ethernet interfaces, Gigabit Ether-
net interfaces, ATM interfaces, HSSI interfaces, POS inter-
faces, FDDI interfaces and the like. Generally, these inter-
faces may include ports appropriate for communication with
the appropriate media. In some cases, they may also include
an independent processor and, in some instances, volatile
RAM. The independent processors may control such com-
munications intensive tasks as packet switching, media
control and management. By providing separate processors
for the communications intensive tasks, these interfaces
allow the master microprocessor 62 to efficiently perform
routing computations, network diagnostics, security func-
tions, etc.

[0080] Although the system shown in FIG. 11 illustrates
one specific network device of the present invention, it is by
no means the only network device architecture on which the
present invention can be implemented. For example, an
architecture having a single processor that handles commu-
nications as well as routing computations, etc. is often used.
Further, other types of interfaces and media could also be
used with the network device.

[0081] Regardless of network device’s configuration, it
may employ one or more memories or memory modules
(such as, for example, memory block 65) configured to store
data, program instructions for the general-purpose network
operations and/or other information relating to the function-
ality of the peer-to-peer file sharing techniques described
herein. The program instructions may control the operation
of an operating system and/or one or more applications, for
example. The memory or memories may also be configured
to include.

[0082] Because such information and program instruc-
tions may be employed to implement the systems/methods
described herein, the present invention relates to machine
readable media that include program instructions, state
information, etc. for performing various operations
described herein. Examples of machine-readable media
include, but are not limited to, magnetic media such as hard
disks, floppy disks, and magnetic tape; optical media such as
CD-ROM disks; magneto-optical media such as floptical



US 2002/0049760 Al

disks; and hardware devices that are specially configured to
store and perform program instructions, such as read-only
memory devices (ROM) and random access memory
(RAM). The invention may also be embodied in a carrier
wave travelling over an appropriate medium such as air-
waves, optical lines, electric lines, etc. Examples of program
instructions include both machine code, such as produced by
a compiler, and files containing higher level code that may
be executed by the computer using an interpreter.

[0083] Additional embodiments of the present invention
are described in Appendix C and Appendix D to the present
application, each of which is incorporated herein by refer-

Apr. 25, 2002

ence in its entirety for all purposes. Appendix C is entitled,
“FLYCODE DATABASE SPECIFICATION”, and Appen-
dix D is entitled, “FLYCODE VERSION 2 ARCHITEC-
TURE—SPECIFICATION".

[0084] Although several preferred embodiments of this
invention have been described in detail herein with reference
to the accompanying drawings, it is to be understood that the
invention is not limited to these precise embodiments, and
that various changes and modifications may be effected
therein by one skilled in the art without departing from the
scope of spirit of the invention as defined in the appended
claims.



US 2002/0049760 A1l Apr. 25,2002

APPENDIX A

The MD35 Message-Digest Algorithm



US 2002/0049760 A1l Apr. 25,2002
10

The MD5 Message-Digest Algorithm

Status of this Memo
This memo provides information for the Internet community. It does
not specify an Internet standard. Distribution of this memo is
unlimited.

Acknowlegements
We would like to thank Don Coppersmith, Burt Kaliski, Ralph Merkle,
David Chaum, and Noam Nisan for numerous helpful comments and

suggestions.

Table of Contents

1. Executive Summary 1
2. Terminology and Notation 2
3. MD5 Algorithm Description 3
4. Summary 6
5. Differences Between MD4 and MD5 6
References 7
APPENDIX A - Reference Implementation 7
Security Considerations 21
Author's Address 21

1. Executive Summary

This document describes the MD5 message-digest algorithm. The
algorithm takes as input a message of arbitrary length and produces
as output a 128-bit "fingerprint" or "message digest" of the input.
It is conjectured that it is computationally infeasible to produce
two messages having the same message digest, or to produce any
messade having a given prespecified target message digest. The MD5
algorithm is intended for digital signature applications, where a
large file must be "compressed" in a secure manner before being
encrypted with a private (secret) key under a public-key cryptosystem
such as RSA.



US 2002/0049760 A1l Apr. 25, 2002
11

The MDS5 algorithm is designed to be quite fast on 32-bit machines. In
addition, the MD5 algorithm does not require any large substitution
tables; the algorithm can be coded quite compactly.

The MD5 algorithm is an extension of the MD4 message-digest algorithm
1,2]. MD5 is slightly slower than MD4, but 1s more "conservative" in
design. MD5 was designed because it was felt that MD4 was perhaps
being adopted for use more quickly than justified by the existing
critical review; because MD4 was designed to be exceptionally fast,
it is "at the edge" in terms of risking successful cryptanalytic
attack. MD5 backs off a bit, giving up a little in speed for a much
greater likelihood of ultimate security. It incorporates some
suggestions made by various reviewers, and contains additional
optimizations. The MD5 algorithm is being placed in the public domain
for review and possible adoption as a standard.

For OSI-based applications, MD5's object identifier is

md5 OBJECT IDENTIFIER ::=
iso (1) member-body(2) US(840) rsadsi(113549) digestAlgorithm(2) 5}

In the X.509 type AlgorithmIdentifier [3], the parameters for MD5
should have type NULL.

Terminology and Notation

In this document a "word" is a 32-bit guantity and a "byte” is an
eight-bit quantity. A sequence of bits can be interpreted in a
natural manner as a sequence of bytes, where each consecutive group
of eight bits is interpreted as a byte with the high-order (most
significant) bit of each byte listed first. Similarly, a sequence of
bytes can be interpreted as a sequence of 32-bit words, where each
consecutive group of four bytes is interpreted as a word with the
low-order (least significant) byte given first.

Let x i1 denote "x sub i". If the subscript is an expression, we
surround it in braces, as in x_{i+1l}. Similarly, we use * for
superscripts (exponentiation), so that x"i denotes x to the i-th
power.

Let the symbol "+" denote addition of words (i.e., modulo-2732
addition). Let X <<< s denote the 32-bit value obtained by circularly
shifting (rotating) X left by s bit positions. Let not(X) denote the
bit-wise complement of X, and let X v Y denote the bit-wise OR of X
and Y. Let X xor Y denote the bit-wise XOR of X and Y, and let XY
denote the bit-wise AND of X and Y.



US 2002/0049760 A1 Apr. 25, 2002
12

3. MD5 Algorithm Description

We begin by supposing that we have a b-bit message as input, and that
we wish to find its message digest. Here b 1s an arbitrary
nonnegative integer; b may be zero, it need not be a multiple of
eight, and it may be arbitrarily large. We imagine the bits of the
message written down as follows:

mom1l ... m {b-1}

The following five steps are performed to compute the message digest
of the message.

3.1 Step 1. Append Padding Bits

The message is "padded" (extended) so that its length (in bits) is
congruent to 448, modulo 512. That is, the message is extended so

that it is just 64 bits shy of being a multiple of 512 bits long.

Padding is always performed, even if the length of the message is

already congruent to 448, modulo 512.

Padding is performed as follows: a single "1" bit i1s appended to the
message, and then "O0" bits are appended so that the length in bits of
the padded message becomes congruent to 448, module 512. In all, at
least one bit and at most 512 bits are appended.

3.2 Step 2. Append Length

A 64-bit representation of b (the length of the message before the
padding bits were added) is appended to the result of the previous
step. In the unlikely event that b is greater than 2%64, then only
the low-order 64 bits of b are used. (These bits are appended as two

32-bit words and appended low-order word first in accordance with the
previous conventions.)

At this point the resulting message (after padding with bits and with
b) has a length that ig an exact multiple of 512 bits. Equivalently,
this message has a length that is an exact multiple of 16 (32-bit)
words. Let M[0 ... N-1] denote the words of the resulting message,
where N ig a multiple of 16.

3.3 Step 3. Initialize MD Buffer

A four-word buffer (A,B,C,D) is used to compute the message digest.
Here each of A, B, C, D is a 32-bit register. These registers are

initialized to the following values in hexadecimal, low-order bytes
first):



US 2002/0049760 A1 Apr. 25, 2002
13

word A: 01 23 45 67
word B: 89 ab cd ef
word C: fe dc ba 98
word D: 76 54 32 10

3.4 Step 4. Process Message in 16-Word Blocks

We first define four auxiliary functions that each take as input
three 32-bit words and produce as output one 32-bit word.

F(X,Y,2) = XY Vv not(X) Z
G(X,Y,2) = XZ v Y not(2)
H(X,Y,2) = X Xor Y xor Z
I(X,Y,2) = ¥ xor (X v not(2Z))

In each bit position F acts as a conditional: if X then Y else Z.
The function F could have been defined using + instead of v since XY
and not(X)Z will never have 1's in the same bit position.) It is
interesting to note that if the bits of X, ¥, and Z are independent
and unbiased, the each bit of F(X,Y,2) will be independent and
unbiased.

The functions G, H, and I are similar to the function F, in that they
act in "bitwise parallel" to produce their output from the bits of X,
Y, and Z, in such a manner that if the corresponding bits of X, Y,
and Z are independent and unbiased, then each bit of G(X,Y,Z),
H(X,Y,2), and I(X,Y,Z) will be independent and unbiased. Note that
the function H is the bit-wise "xor" or '"parity" function of its
inputs.

This step uses a 64-element table T[1 ... 64] constructed from the
sine function. Let T[i] denote the i-th element of the table, which
is equal to the integer part of 4294967296 times abs{sin(i)), where i
is in radians. The elements of the table are given in the appendix.

Do the following:

/* Process each 16-word block. */
For i = 0 to N/16-1 do

/* Copy block i into X. */
For j = 0 to 15 do

Set X[j] to M[i*16+j].
end /* of loop on j */

/* Save A as BRA, B as BB, C as CC, and D as DD. */
AA A
BB B



US 2002/0049760 A1

CcC = C

DD =D

/* Round 1.
/*

*/

14

Let [abcd k s i] denote the operation

end

a=b + ((a + F(b,c,d) + X[k] + T[1]) <<< s).
/* Do the following 16 operations. */
[ABCD 0 7 11} [DaBC 1 12 2] [CDAB 2 17 3]
[ABCD 4 7 5] [DABC 5 12 6] [CDAB 6 17 7]
[ABCD 8 7 9] [DABC 9 12 10] [CDAB 10 17 11]
[ABCD 12 7 13] [DABC 13 12 14] [CDAB 14 17 15]
/* Round 2. */
/* Let [abcd k s i] denote the operation

a=b + ({a + Glb,c,d) + X[k] + T[i]) <<< g).
/* Do the following 16 operations. */
[ABCD 1 5 17] [DABC 6 9 18] [CDABR 11 14 19]
[ABCD 5 5 21] [DABC 10 9 22] [CDAB 15 14 23]
[ABCD 9 5 25} [DABC 14 9 26] [CDAB 3 14 27]
[ABCD 13 5 29] [DABC 2 9 30] [CDAB 7 14 31]
/* Round 3. */
/* Let [abcd k 8 t] denote the operation

a=>b+ ((a + Hb,c,d) + X[k] + T[1i]) <<< s8).
/* Do the following 16 operations. */
[ABCD 5 4 33] [DABC 8 11 34] [CDAB 11 16 35]
[ABCD 1 4 37] [DABC 4 11 38] [CDAB 7 16 39]
[ABCD 13 4 41] [DABC 0 11 42} [CDAB 3 16 43]
[ABCD 9 4 45] [DABC 12 11 46] [CDAB 15 16 47]
/* Round 4. */
/* Let [abcd k s t] denote the operation

a=>b + ((a + I(b,c,d) + X[k] + T[i]) <<< 8).
/* Do the following 16 operations. */
(ABCD 0 6 49] [DABC 7 10 50] [CDAB 14 15 51]
[ABCD 12 6 531} [(DABC 3 10 54] [cDAB 10 15 55]
[ABCD 8 6 57] [DABC 15 10 58] [CDAB 6 15 59]
[ABCD 4 6 61] [DABC 11 10 62] [CDAB 2 15 63]
/* Then perform the following additions. (That is

was started.) */
AR
BB
cC

DD

ogQwp
O T
onww
+ + + +

~
*

¢}

+h

loop on i */

*/

[BCDA
[BCDA
[BCDA
[BCDA

*/

[BCDA
[BCDA
[BCDA
[BCDA

*/

{BCDA
[BCDA
[BCDA
[BCDA

*/

[BCDA
[BCDA
{BCDa
[BCDA

Apr. 25, 2002

3 22
7 22
11 22
15 22

4]
8]
12]
16]

20
20
20
20

20]
24]
28]
32]

N Wk o

14
10

23
23

361
40]
44]
48]

5 21
1 21
13 21
9 21

521]
56]
60]
64]

increment each
of the four registers by the value it had before this block



US 2002/0049760 Al Apr. 25, 2002
15

3.5 Step 5. Output

The message digest produced as output is A, B, C, D. That is, we
begin with the low-order byte of A, and end with the high-order byte
of D.

This completes the description of MD5. A reference implementation in
C is given in the appendix.

4. Summary

The MD5 message-digest algorithm is simple to implement, and provides
a "fingerprint" or message digest of a message of arbitrary length.
It is conjectured that the difficulty of coming up with two messages
having the same message digest is on the order of 2%64 operations,
and that the difficulty of coming up with any message having a given
message digest is on the order of 2%128 operations. The MD5 algorithm
has been carefully scrutinized for weaknesses. It is, however, a
relatively new algorithm and further security analysis is of course
justified, as is the case with any new proposal of this sort.

5. Differences Between MD4 and MDS

The following are the differences between MD4 and MDS:

1. A fourth round has been added.
2. Each step now has a unique additive constant.
3. The function g in round 2 was changed from (XY v XZ v YZ) to

(XZ v ¥ not(Z)) to make g less symmetric.

4. Each step now adds in the result of the previous step. This
promotes a faster "avalanche effect”.

5. The order in which input words are accessed in rounds 2 and
3 is changed, to make these patterns less like each other.

6. The shift amounts in each round have been approximately
optimized, to yield a faster "avalanche effect." The shifts in
different rounds are distinct.



US 2002/0049760 Al Apr. 25, 2002
16

References

[1] Rivest, R., "The MD4 Message Digest Algorithm", RFC 1320, MIT and
RSA Data Security, Inc., April 1992.

[2] Rivest, R., "The MD4 message digest algorithm", in A.J. Menezes
and S.A. Vanstone, editors, Advances in Cryptology - CRYPTO '90
Proceedings, pages 303-311, Springer-Verlag, 1591.

[3] CCITT Recommendation X.509 (1988), "The Directory -
Authentication Framework.™

APPENDIX A - Reference Implementation

This appendix contains the following fileg taken from RSAREF: A
Cryptographic Toolkit for Privacy-Enhanced Mail:

global.h -- global header file

md5.h -- header file for MD5

md5c.¢c -- source code for MD5
For more information on RSAREF, send email to <rsaref@rsa.com>.
The appendix also includes the following file:

mddriver.c -- test driver for MD2, MD4 and MD5

The driver compiles for MD5 by default but can compile for MD2 or MD4
if the symbol MD is defined on the C compiler command line as 2 or 4.

The implementation is portable and should work on many different
plaforms. However, it is not difficult to optimize the implementation
on particular platforms, an exercise left to the reader. For example,
on "little-endian" platforms where the lowest-addressed byte in a 32-
bit word is the least significant and there are no alignment
restrictions, the call to Decode in MD5Transform can be replaced with
a typecast.

A.1 global.h

/* GLOBAL.H - RSAREF types and constants
*/

/* PROTOTYPES should be set to one if and only if the compiler supports
function argument prototyping.
The following makes PROTOTYPES default to 0 if it has not already



US 2002/0049760 A1 Apr. 25, 2002
17

been defined with C compiler flags.
*/
#ifndef PROTOTYPES
#define PROTOTYPES 0
#endif

/* POINTER defines a generic pointer type */
typedef unsigned char *POINTER;

/* UINT2 defines a two byte word */
typedef unsigned short int UINTZ2;

/* UINT4 defines a four byte word */
typedef unsigned long int UINT4;

/* PROTO_LIST is defined depending on how PROTOTYPES is defined above.
If using PROTOTYPES, then PROTC LIST returns the list, otherwise it
returns an empty list.
*
/
#if PROTOTYPES
#define PROTO_LIST(list) list
#else
#define PROTO_LIST(list) ()
#endif

A.2 md5.h

/* MD5.H - header file for MD5C.C
*/

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm" in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm" in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.



US 2002/0049760 A1 Apr. 25, 2002
18

These notices must be retained in any copies of any part of this
documentation and/or software.

*/

/* MD5 context. */
typedef struct {

UINT4 state[4]; /* state (ABCD) */

UINT4 count{2]; /* number of bits, modulo 2764 (lsb first) */

unsigned char buffer([64]; /* input buffer */
} MD5_CTX;

void MD5Init PROTO LIST ((MD5_CTX *));
void MD5Update PROTO LIST
((MD5_CTX *, unsigned char *, unsigned int));
void MDSFinal PROTO_LIST ((unsigned char [16], MD5_CTX *));

A.3 md5c.c

/* MDSC.C - RSA Data Security, Inc., MD5 message-digest algorithm

*/

/* Copyright (C) 1991-2, RSA Data Security, Inc. Created 1991. All
rights reserved.

License to copy and use this software is granted provided that it
is identified as the "RSA Data Security, Inc. MD5 Message-Digest
Algorithm” in all material mentioning or referencing this software
or this function.

License is also granted to make and use derivative works provided
that such works are identified as "derived from the RSA Data
Security, Inc. MD5 Message-Digest Algorithm” in all material
mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

*/

#include "global.h"
#include "mdS.h"

/* Constants for MDSTransform routine.

*/



US 2002/0049760 A1

#define 811
#define 812
#define S13
#define S14
#define S21
#define S22
#define S23
#define S24
#define S31
#define 832
#define 833
#define S34
##define S41
#define S42
#define S43
#define S44

static void
static void

((UINT4 *, unsigned char *, unsigned int));

7
12
17
22
5
S
14
20
4
11
16
23
6
10
15
21

19

Apr. 25, 2002

MD5Transform PROTO LIST ((UINT4 [4], unsigned char [641));
Encode PROTO LIST

{{(unsigned char *, UINT4 *, unsigned int));
static void Decode PROTO_LIST

static void MD5 memcpy PROTO LIST ((POINTER, POINTER, unsigned int));
static void MD5_memset PROTO_LIST ((POINTER,

static unsigned char PADDINGI[64]
s OI
I OI
I OI

0x80, 0, O
0, 0, 0, O
0, 0, 0, O

7

0

0,
0,
0,

0
0
0

OI OI
0, 0O,
0, 0,

= |
0, 0,
0, 0, 0, 0, 0
0, 0,

/* F, G, H and I are basic MD5 functions.

*/
#define F(x,
#define G(x,
#define H(x,
#define I (x,

Y.
Y,
Y
Y.

z)
z)
z)
z)

((
(«
((
((

{x)
(x)
x)
v)

& (y))

& (z)l

(

(
z)
(~

{(~x) & (=)
(v) & {~2)

)
z)))

/* ROTATE_LEFT rotates x left n bits.

*/

#define ROTATE_LEFT (x, n)

/* FF, GG, HH,

*/

#define FF(a, b,

(a) += F ((

{a) = ROTATE_LEFT

b),

c,

d, x,

(c),

int,

))
))

(((x) << (@) | ({x)

s, ac)
(@) + (x) +
((a),

(s));

\

and IT transformations for rounds 1,
Rotation is separate from addition to prevent recomputation.

(UINT4) (ac) ;

N~ N~
~ N~

>> (32-(n))))

unsigned int));

and 4.



US 2002/0049760 A1l Apr. 25,2002
20

{a) += (b); \

#define GG(a, b, ¢, 4, x, s, ac) { \
(a) += G ((b), {c), (@) + (x) + (UINT4) (ac); \
(a) = ROTATE_LEFT ((a), (s)); \
(a) += (b); \

#define HH(a, b, ¢, 4, x, s, ac) { \

(a) += H ((b), (c), (d)) + (x) + (UINT4) (ac); \
(a) = ROTATE LEFT ((a), (s)); \

(a) += (b); \

#define II(a, b, ¢, 4, x, s, ac) { \
(@) += I ((b), (), (d)) + (x) + (UINT4) (ac); \
(a) = ROTATE LEFT ((a), (s)); \
(?) += (b); \

/* MD5 initialization. Begins an MD5 operation, writing a new context.

*/

void MD5Init (context)

MD5_CTX *context; /* context */

{
context->count [0] = context->count[l] = 0;
/* Load magic initialization constants.

*/
context->state[0] = 0x67452301;
context->state[l1] = Oxefcdab89;
context->state[2] = 0x98badcfe;
context->state[3] = 0x10325476;

}

/* MDS5 block update operation. Continues an MD5 message-digest
operation, processing another message block, and updating the

context.

*/
void MD5Update (context, input, inputlen)
MD5_CTX *context; /* context */
unsigned char *input; /* input block */
unsigned int inputLen; /* length of input block */

unsigned int i, index, partLen;

/* Compute number of bytes mod 64 */
index = (unsigned int) ({context->count[0] >> 3) & O0x3F);

/* Update number of bits */
if ((context->count[0] += {((UINT4) inputLen << 3))



US 2002/0049760 Al Apr. 25, 2002
21

< ((UINT4) inputLen << 3))
context->count [1] ++;
context->count [1] += ((UINT4)inputLen >> 29);

partLen = 64 - index;

/* Transform as many times as possible.
*/
if (inputLen >= partLen) {
MD5_memcpy
( (POINTER) &context->buffer [index], (POINTER)input, partlen);
MDS5Transform (context->state, context->buffer);

for (i = partLen; i + 63 < inputlLen; i += 64)
MD5Transform (context-sstate, &input[i]);

index = 0;

}

else

1= 0;

/* Buffer remaining input */

MD5_memcpy

( (POINTER) &context-s>buffer[index], (POINTER)&input[il,
inputLen-i) ;

}

/* MD5 finalization. Ends an MD5 message-digest operation, writing the
the message digest and zeroizing the context.

*/
void MD5Final (digest, context)
unsigned char digest[16]; /* message digest */
MD5_CTX *context; /* context */

{

unsigned char bits([8];
unsigned int index, padLen;

/* Save number of bits */
Encode (bits, context-scount, 8);

/* Pad out to 56 mod 64.

*/
index = (unsigned int) ( (context-s>count [0] >> 3) & 0x3f);
padlLen = (index < 56) ? (56 - index) : (120 - index);
MD5Update (context, PADDING, padlen);

/* Append length (before padding) */
MD5Update (context, bits, 8);



US 2002/0049760 A1

/* Store state in digest */

22

Encode (digest, context->state, 16);

/* Zeroize sensitive information.

*/

MD5_memset ((POINTER)context, 0, sizeof (*context));

/* MD5 basic transformation. Transforms state based on block.

*/

static void MD5Transform (state, block)

UINT4 statel[4];

unsigned char block([64];

{

UINT4 a
Decode

/* Round 1 */

FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF
FF

/* Round 2

GG
GG
GG
GG
GG
GG
GG
GG
GG
GG
GG

(a,
(4,
(c,
(bl
{a,
(d,
(c,
(b,
(a,
(d,
{c,
(b,
(a,
(4,
(c,
(b,

(a,
{a,
(c,
(b,
(a,
(a,
(c,
(b,
(a,
(d,
(c,

(x,

state[0],

block, 64);

Cy

d,

x[ 0],
x[ 1],
x[ 21,
x[ 3],
x[ 41,
x[ 51,
x[ 61,
x[ 77,
x[ 8],
x[ 91,
x[10],
x[11],
x[1271,
x[13],
xf{147,
x[15},

x[ 1],
x[ 6],
x[111,
x{ 0],
x[ 51,
x[10}],
x[15],
x{ 4],
x[ 9},
x[141,
x[ 31,

s11,
s12,
S13,
s14,
s11,
s12,
s13,
S14,
S11,
s12,
513,
s14,
S11,
s12,
s13,
s14,

s21,
522,
s23,
s24,
s21,
S22,
s23,
s24,
s21,
822,
s23,

0xd76aa478) ;
0xe8c7b756) ;
0x242070db) ;
Oxclbdceee) ;
0xf57c0faf) ;
0x4787c62a) ;
0xaB8304613) ;
0xfd469501) ;
0x698098d8) ;
0x8b44f7af) ;
Oxf£f£5bb1l) ;
0x895cd7be) ;
0x6b901122) ;
0x£d987193) ;
0xa679438e) ;
0x49b40821) ;

0xf6le2562) ;
0xc040b340) ;
0x265e5a51) ;
0xe9béc7aa) ;
0xdeée2£105d) ;
0x2441453) ;
0xd8aleé&8l) ;
0xe7d3fbc8) ;
0x21lelcdesd) ;
0xc33707d6) ;
0xf44504d87) ;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

b = state[l]l, ¢ = statel2],

WO JOU D WM

17
18
19
20
21
22
23
24
25
26
27

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

d

Apr. 25, 2002

state[3], x[16];



US 2002/0049760 A1

GG
GG
GG
GG
GG

/*
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HH
HE

/*
II
IT1
1T
II
IT
IT
II
IT
1T
II
II
IT
IT
IT
IT
IT

(b,
(a,
(d,
(c,
(b,

c,
b,
a,
dr
C,

Round 3 */

(a,
{(d,
(c,
(b,
(a,
(a,
(c,
(b,
(a,
(d,
(c,
(bl
{a,
(qa,
(¢,
(b,

b,
al
dl
c,
bl
al
d,
c,
b,
a,
d,
c,
b,
al
d,
cl

a, b,

c, d,
b, c,
a, b,
d, a,

Round 4 */

(a,
(4,
(c,
(b,
(a,
(d,
(c,
(b,
(a,
(d,
(c,
(b,
(a,
(dl
(c,
(b,

b:
a,
4,
<,
b,
a,
d,
c,
b.r
a,
a,
c,
b,
a,
a4,
c,

state[0]
state[1]
state[2]
state 3]

+
Il

+

+
o

Q0o W

+

e e S

x[ 8],
xf{13],
x[ 2],
x[ 71,
x([12],

x[ 51,
x[ 8],
x[11],
x[141,
x[ 11,
x[ 4],
x{ 71,
x[10],
x[13],
x[ 0],
x[ 31,
x[ 61,
x[ 91,
x[12],
x[15],
x[ 271,

x[ 0],
x[ 71,
x[14],
x[ 5],
x[121,
x[ 31,
x[10],
x[ 11,
x[ 81,
x[15],
x[ 6],
x[13],
x[ 41,
x[11],
x[ 2],
x[ 97,

23

524,
821,
522,
523,
524,

831,
S32,
533,
534,
S§31,
832,
S33,
534,
531,
532,
533,
534,
S31,
532,
S33,
S34,

541,
S42,
543,
S44,
S41,
542,
543,
S44,
S41,
S42,
543,
S44,
541,
S42,
543,
544,

0x455al4ed) ;
0xag%e3e905) ;
Oxfcefal3fs);
0x676£0249) ;
0x8d2a4c8a) ;

0xfffa3942);
0x8771f681) ;
o0x6doeds122) ;
0xfde5380c¢c) ;
0xadbeeadd) ;
Oxdbdecfa?) ;
0xfebb4b60) ;
0xbebfbc70) ;
0x289b7ech) ;
Oxeaal27fa) ;
0xd4ef3085) ;

0x4881d05) ;
0xd9d4d039) ;
0xe6db99e5) ;
0x1fa27cfs8) ;
0xc4ach665) ;

0xf4292244) ;
0x432aff97);
0xab9423a7) ;
0xfe93a039) ;
0x655b5%9¢c3) ;
0x8f0ccc92) ;
Oxffeffa74d) ;
0x85845dd1) ;
ox6faB87e4f) ;
Oxfe2ceéel) ;
0xa3014314)} ;
0x4e0811al) ;
0xf7537e82) ;
0xbd3af235) ;
0x2ad7d2bb) ;
0xeb86d391) ;

/* Zeroize sensitive information.

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Apr. 25, 2002

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/



US 2002/0049760 Al Apr. 25, 2002
24

*/
}

/* Encodes input (UINT4) into output (unsigned char). Assumes len is
p 1% g
a multiple of 4.

*

/

static void Encode (output, input, len)
unsigned char *output;

UINT4 *input;

unsigned int len;

MD5 memset ((POINTER)x, 0, sizeof (x));

unsigned int i, j;

for (1 = 0, j = 0; J < len; i++, j += 4)
output [j] = (unsigned char) (input[i] & Ox£ff);

output [j+1] (unsigned char) ( (input[i] >»> 8) & Oxff);
output [j+2] {(unsigned char) ( (input[i] >> 16) & Oxff);
output [j+3] (unsigned char) ((input{i] >> 24) & Oxff);

}

/* Decodes input (unsigned char) into output (UINT4). Assumes len is
a multiple of 4.

*

/

static void Decode (output, input, len)
UINT4 *output;

unsigned char *input;

unsigned int len;

[UNE TR

unsigned int i, j;

for (i = 0, jJ = 0; J < len; i++, j += 4)
output [i] = ((UINT4)inputl[j]) | (((UINT4)input{j+1]) << 8) |
(((UINT4) input [§+2]1) << 16) | (((UINT4)input[j+3]) << 24);

/* Note: Replace "for loop" with standard memcpy if possible.
*/

static void MD5 memcpy (output, input, len)
POINTER output;

POINTER input;

unsigned int len;

unsigned int i;

for (1 = 0; i < len; i++)



US 2002/0049760 A1 Apr. 25, 2002
25

output [i] = input[il];

/* Note: Replace "for loop" with standard memset if possible.
*/

static void MD5_memset (output, value, len)

POINTER output;

int value;

unsigned int len;

{

unsigned int i;

for (i = 0; i < len; i++)
({char *)output) [i] = (char)value;

}

A.4 mddriver.c

/* MDDRIVER.C - test driver for MD2, MD4 and MD5
*/

/* Copyright (C) 1990-2, RSA Data Security, Inc. Created 1990. All
rights reserved.

RSA Data Security, Inc. makes no representations concerning either
the merchantability of this software or the suitability of this
software for any particular purpose. It is provided "as is"
without express or implied warranty of any kind.

These notices must be retained in any copies of any part of this
documentation and/or software.

*/

/* The following makes MD default to MD5 if it has not already been
defined with C compiler flags.
*/

#ifndef MD

#define MD MDS

#endif

#include <stdio.h>
#include <time.h>

#include <«string.h>
#include "global.h"

#if MD == 2
#include "md2.h"
#endif

#if MD == 4



US 2002/0049760 A1

Apr. 25, 2002
26

#include "md4.h"

#endif
#if MD == 5

#include "md5.h"

#endif

/* Length of test block, number of test blocks.

*/

#define TEST_BLOCK_LEN 1000
#define TEST BLOCK_COUNT 1000

static void
static void
static void
static void
static void
static void

#if MD ==

MDString PROTO_LIST ((char *));
MDTimeTrial PROTO LIST ((void));
MDTestSuite PROTO LIST ((void));

MDFile PROTO LIST ((char *)};

MDFilter PROTO_LIST ((void));

MDPrint PROTO_LIST (({(unsigned char [16]));

#define MD_CTX MD2_ CTX
##define MDInit MD2Init
#define MDUpdate MD2Update
#define MDFinal MD2Final

#endif
#if MD ==

#define MD_CTX MD4 CTX
#define MDInit MD4Init
#define MDUpdate MD4Update
#define MDFinal MD4Final

#endif
#if MD ==

#define MD_CTX MD5_CTX
#define MDInit MD5Init
#define MDUpdate MD5Update
#define MDFinal MD5Final

#endif

/* Main driver.

Arguments (may be any combinatiocn):

-sstring

-t

-X

filename

(none)
*/

digests string

runs time trial

runs test script
digests file

digests standard input

int main (argc, argv)

int argc;



US

2002/0049760 A1l
27

char *argvl];

}

int i;

if {argc > 1)
for (i = 1; 1 < argc; i++)
if (argv[i][0] == '-' && argv[i] [1] == 's')
MDString (argv([i] + 2);
else if (stremp (argv[i], "-t") == 0)
MDTimeTrial () ;
else if (strcmp (argv[i], "-x") == 0)
MDTestSuite () ;
else
MDFile (argv([il);
else

MDFilter ();

return (0);

/* Digests a string and prints the result.

*/

static void MDString (string)
char *string;

{

}

MD_CTX context;
unsigned char digest[16];
unsigned int len = strlen (string);

MDInit (&context);
MDUpdate (&context, string, len);
MDFinal (digest, &context);

printf ("MD%d (\"%s\") = ", MD, string);
MDPrint (digest);
printf ("\n");

Apr. 25, 2002

/* Measures the time to digest TEST_ BLOCK COUNT TEST BLOCK LEN-byte

blocks.
*/

static void MDTimeTrial ()

{

MD_CTX context;
time_t endTime, startTime;

unsigned char block [TEST BLOCK LEN], digest[16];

unsigned int i;



US 2002/0049760 A1l
28

printf
("MD%d time trial. Digesting %d %d-byte blocks
TEST BLOCK_LEN, TEST_ BLOCK_COUNT) ;

/* Initialize block */
for (i = 0; i < TEST BLOCK LEN; i++)
block[i] = (unsigned char) (i & Oxff);

/* Start timer */
time (&startTime);

/* Digest blocks */

MDInit (&context);

for (i = 0; i < TEST BLOCK COUNT; i++)
MDUpdate (&context, block, TEST BLOCK_LEN) ;
MDFinal (digest, &context);

/* Stop timer */
time (&endTime) ;

printf (" done\n");
printf ("Digest = ");
MDPrint (digest);
printf ("\nTime
printf

(*Speed = %1d bytes/second\n",

Apr. 25, 2002

.", MD,

%$1d seconds\n", (long) (endTime-startTime)) ;

(long) TEST BLOCK_LEN * (long)TEST_BLOCK COUNT/ (endTime-startTime)) ;

/* Digests a reference suite of strings and prints the results.

*/
static void MDTest8uite ()

{

printf ("MD%d test suite:\n", MD);

MDString ("");

MDString ("a");

MDString ("abc");

MDString ("message digest");

MDString ("abcdefghijklmnopgrstuvwxyz") ;
MDString

("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789") ;

MDsString
("1234567890123456789012345678901234567890\
12345678901234567839012345678901234567890") ;

/* Digests a file and prints the result.



US 2002/0049760 A1l Apr. 25, 2002
29

*/
static void MDFile (filename)
char *filename;
{
FILE *file;
MD_CTX context;
int len;
unsigned char buffer([1024], digest[16];

if ((file = fopen (filename, "rb"}) == NULL)
printf ("%$s can't be opened\n", filename);

else {
MDInit (&context);
while (len = fread (buffer, 1, 1024, file))
MDUpdate {&context, buffer, len);
MDFinal (digest, &context);

fclose (file);

printf ("MD%d (%s) = ", MD, filename);
MDPrint (digest);
printf ("\n");

}

/* Digests the standard input and prints the result.
*/
static void MDFilter ()
{
MD CTX context;
int len;
unsigned char buffer[16], digest[16];

MDInit (&context]);

while (len = fread (buffer, 1, 16, stdin))
MDUpdate (&context, buffer, len);

MDFinal (digest, &context);

MDPrint (digest);
printf ("\n");

/* Prints a message digest in hexadecimal.
*/

static void MDPrint (digest)

unsigned char digest([16];

{



US 2002/0049760 A1l Apr. 25,2002
30

unsigned int i;

for (i = 0; 1 < 16; i++)
printf ("%02x", digest[i]);

A.5 Test suite

The MD5 test suite (driver option "-x") should print the following
results:

MD5 test suite:

MD5 ("") = d41d8cd98f00b204e9800998ecf8427e

MD5 ("a") = 0c¢cl75b9%c0f1b6a831c399e269772661

MD5 ("abc") = 900150983cd24fb0d6963£7d28e17£72

MD5 ("message digest") = £96b697d7cb7938d525a2f31aaf161d0

MD5 ("abcdefghijklmnopgrstuvwxyz”) = c¢3fcd3d76192e4007dfb496ccas7ellb
MDS ("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789") =
d174ab98d277d9f5a5611c2c9£419d9f

MDS ("123456789012345678901234567890123456789012345678501234567890123456
78901234567890") = 57edf4a22be3c955ac49dal2e2107b67a

Security Considerations

The level of security discussed in this memo is considered to be
sufficient for implementing very high security hybrid digital-
signature schemes based on MD5 and a public-key cryptosystem.

Author's Address

Ronald L. Rivest

Massachusetts Institute of Technology
Laboratory for Computer Science
NE43-324

545 Technology Sguare

Cambridge, MA 02139-1986

Phone: (617) 253-5880
EMail: rivest®@theory.lcs.mit.edu



US 2002/0049760 A1 Apr. 25, 2002
31

APPENDIX B

IP Authentication Using Keyed SHA1 with Interleaved
Padding (IP-MAC)



US 2002/0049760 A1 Apr. 25, 2002
32

IP Authentication using Keyed SHA1l with Interleaved Padding (IP-MAC)
Status of this Memo
This memo defines a Historic Document for the Intermet community. It
does not specify an Internet standard of any kind. Distribution of
this memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2000). All Rights Reserved.

Abstract

This document describes the use of keyed SHA1l with the IP
Authentication Header.

Table of Contents

1. 1§ oteiaro Y ) DU w3 o 2
O S X 1 - 2 2
1.2, DALA SiZ@ vt ittt it e e e e e e e 2
1.3, PerfOrmManCE . vttt ettt e e e e e e e e e e e e e e e e e 3
2. Caloulatdom .o i e e e e e e e e 3
A. L83 2 - 2T = 5
Security Considerations ..........iiiiniiiiit ittt ienaneanan 6
ACKnOWledgemeIlS .. v ittt ittt e e e e e e 6
B = o Lo =T 7
{0 0 8 = o - 8
o BN oo Y= T (o wt 8



US 2002/0049760 A1l Apr. 25, 2002
33

1. Introduction

The Authentication Header (AH) [RFC-1826] provides integrity and
authentication for IP datagrams. This specification describes the AH
use of keys with the Secure Hash Algorithm (SHALl) ([FIPS-180-1]. This
SHA1-IP-MAC algorithm uses a leading and trailing key (a variant of
the "envelope method"), with alignment padding between both keys and
data.

It should be noted that this document specifies a newer version of
SHA than that described in [FIPS-180], which was flawed. The
older version 1s not interoperable with the newer version.

This document assumes that the reader is familiar with the related
document ¥Security Architecture for the Internet Protocol" [RFC-
1825], that defines the overall security plan for IP, and provides
important background for this specification.

1.1. Keys
The secret authentication key shared between the communicating
parties SHOULD be a cryptographically strong random number, not a
guessgable string of any sort.
The shared key is not constrained by this transform to any particular
size. Lengths of 160-bits (20 octets) MUST be supported by the
implementation, although any particular key may be shorter. Longer
keys are encouraged.

1.2. Data Size

SHAl's 160-bit output is naturally 32-bit aligned. However, many
implementations require 64-bit alignment of the following headers.

Therefore, several options are available for data alignment (most
preferred to least preferred):

1) only the most significant 128-bits (16 octets) of output are used.

2) an additional 32-bits (4 octets) of padding is added before the
SHA1 output.

3) an additional 32-bits (4 octets) of padding is added after the
SHA1l output.

4) the SHA1l output .is variably bit-positioned within 192-bits (24
octets) .



US 2002/0049760 A1 Apr. 25, 2002
34

The size and position of the output are negotiated as part of the key
management. Padding bits are filled with unspecified implementation
dependent (random) values, which are ignored on receipt.

Discussion:

Although truncation of the output for alignment purposes may
appear to reduce the effectiveness of the algorithm, some analysts
of attack verification suggest that this may instead improve the
overall robustness [P0O95a].

1.3. Performance

Preliminary results indicate that SHAl is 62% as fast as MD5, and 80%
as fast as DES hashing. That is:

SHA1 < DES < MD5

This appears to be a reasonable performance tradeoff, as SHAL
internal chaining is significantly longer than either DES or MD5:

DES < MD5 < SHAl

Nota Bene:
Suggestions are sought on alternative authentication algorithms
that have significantly faster throughput, are not patent-
encumbered, and still retain adegquate cryptographic strength.

2. Calculation

The 160-bit digest is calculated as described in [FIPS-180-1]. A
portable C language implementation of SHA1l is available via FTP from
ftp://rand.org/pub/jim/sha.tar.gz.

The form of the authenticated message is:
SHAa1 ( key, keyfill, datagram, datafill, key, shalfill )

First, the variable length secret authentication key is filled to the
next 512-bit boundary, using the same pad-with-length technique
defined for SHA1l. The padding technigue includes a length that
protects arbitrary length keys.

Next, the filled key is concatenated with (immediately followed by)
the invariant fields of the entire IP datagram (variant fields are
zeroed). This is also filled to the mext 512-bit boundary, using the
same pad-with-length technique defined for SHAl. The length includes
the leading key and data.



US 2002/0049760 A1 Apr. 25, 2002
35

Then, the filled data is concatenated with (immediately followed by)
the original variable length key again. A trailing pad-with-length
to the next 512-bit boundary for the entire message is added by SHA1
itself.

Finally, the 160-bit SHAl digest is calculated, and the result is
inserted into the Authentication Data field.

Discussion:

The leading copy of the key is padded in order to facilitate
copying of the key at machine boundaries without requiring re-
alignment of the following datagram. Filling to the SHA1l block
size also allows the key to be prehashed to avoid the physical
copy in some implementations.

The trailing copy of the key is not necessary to protect against
appending attacks, as the IP datagram already includes a total
length field. It reintroduces mixing of the entire key, providing
protection for very long and very short datagrams, and robustness
against possible attacks on the IP length field itself.

When the implementation adds the keys and padding in place before
and after the IP datagram, care must be taken that the keys and/or
padding are not sent over the link by the link driver.



US 2002/0049760 A1 Apr. 25, 2002
36

A. Changes
Changes from RFC 1852:
Use of SHA1l term (as always intended).
Added shortened 128-bit output, and clarify output text.
Added tradeoff text.
Changed padding technique to comply with Crypto '95 recommendations.
Updated references.
Updated contacts.

Minor editorial changes.



US 2002/0049760 A1l Apr. 25, 2002
37

Security Considerations

Users need to understand that the quality of the security provided by
this specification depends completely on the strength of the SHAl
hash function, the correctnesg of that algorithm's implementation,
the security of the key management mechanism and its implementation,
the strength of the key, and upon the correctness of the
implementations in all of the participating nodes.

The SHA algorithm was originally derived from the MD4 algorithm
[RFC-1320]. A flaw was apparently found in the original
specification of SHA [FIPS-180], and this document specifies the use
of a corrected version [FIPS-180-1].

At the time of writing of this document, there are no known flaws in
the SHAl algorithm. That is, there are no known attacks on SHAl or
any of its components that are better than brute force, and the 160-
bit hash size of SHAl is substantially more resistant to brute force
attacks than the 128-bit hash size of MD4 and MD5.

However, as the flaw in the original SHA1l algorithm shows,
cryptographers are fallible, and there may be substantial
deficiencies yet to be discovered in the algorithm.

Acknowledgements

Some of the text of this specification was derived from work by
Randall Atkinson for the SIP, SIPP, and IPvé Working Groups.

Preliminary performance analysis was provided by Joe Touch.

Padding the leading copy of the key to a hash block boundary for
increased performance was originally suggested by William Allen
Simpson.

Padding the leading copy of the key to a hash block boundary for
increased security was suggested by [(KR95]. Including the key length
for increased security was suggested by David Wagner.

Padding the datagram to a hash block boundary to avoid (an
impractical) key recovery attack was suggested by [P0O95b].



US 2002/0049760 A1 Apr. 25, 2002
38

References

[FIPS-180] "Secure Hash Standard", Computer Systems Laboratory,
National Institute of Standards and Technology, U.S.
Department Of Commerce, May 1993.

Also known as: 58 Fed Reg 27712 (1993).

[FIPS-180-1] "Secure Hash Standard", National Institute of Standards
and Technology, U.S. Department Of Commerce, April 1995.

Also known as: 59 Fed Reg 35317 (1994).

[KR95] Kaliski, B., and Robshaw, M., "Mesgage authentication
with MD5", CryptoBytes (RSA Labs Technical Newsletter),
vol.l no.1, Spring 1995.

[PO95a] Preneel, B., and van Oorshot, P., "MDx-MAC and Building
Fast MACs from Hash Functions", Advances in Cryptology
-- Crypto '95 Proceedings, Santa Barbara, California,
August 1995.

[PO95b] Preneel, B., and van OCorshot, P., "On the Security of
Two MAC Algorithms", Presented at the Rump Session of
Crypto '95, Santa Barbara, California, August 1995.

[RFC 1320] Rivest, R., "The MD4 Message-Digest Algorithm", RFC
1320, April 1992.

{RFC 1700] Reynolds, J. and J. Postel, "Assigned Numbers", STD 2,
RFC 1700, October 1994.

[RFC 1825] Atkinson, R., "Security Architecture for the Internet
Protocol"™, RFC 1825, July 1995.

[RFC 1826] Atkinson, R., "IP Authentication Header", RFC 1826, July
1995.



US 2002/0049760 Al Apr. 25, 2002
39

Contacts

Comments about this document should be discussed on the
photuris@adk.gr mailing list.

This document is a submission to the IP Security Working Group of the
Internet Engineering Task Force (IETF). The working group can be
contacted via the current chairs:

Questions about this document can also be directed to:

Perry Metzger

Piermont Information Systems Inc.
160 Cabrini Blvd., Suite #2

New York, NY 10033

EMail: perry@piermont.com

William Allen Simpson

DayDreamer

Computer Systems Consulting Services
1384 Fontaine

Madison Heights, Michigan 48071

EMail: wsimpson@UMich.edu
wsimpson@GreenDragon.com (preferred)

Editor's Note

This paper was originally submitted May 1, 1996.



US 2002/0049760 A1l Apr. 25, 2002
40

Full Copyright Statement
Copyright (C) The Internet Society (2000). 2All Rights Reserved.

This document and translations of it may be copied and furnished to
others, and derivative works that comment on or otherwise explain it
or assist in its implementation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any
kind, provided that the above copyright notice and this paragraph are
included on all such copies and derivative works. However, this
document itself may not be modified in any way, such as by removing
the copyright notice or references to the Internet Society or other
Internet organizations, except as needed for the purpose of
developing Internet standards in which case the procedures for
copyrights defined in the Internet Standards process must be
followed, or as required to translate it into languages other than
English.

The limited permissions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

This document and the information contained herein is provided on an
"AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATTION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the
Internet Society.



US 2002/0049760 A1l Apr. 25,2002
41

APPENDIX C

Flycode
Version 2 Architecture-Specification



US 2002/0049760 A1l Apr. 25, 2002

42

Flycode
Version 2 Architecture- Specification

(Company Confidential)

Lagt updated: 12 Tune, 2001 by Mitra
© Copyright Flycode Ltd., January 2000

Purpose Contents

This is the main document for the Back to Flycode Specifications Index
Version 2 Architecture.

This document is organized as follows.
Version Two of Flycode has some
similarities to Version 1, but many First there is are two overviews a high-level "100,000 feet" overview, and
differences! This is an independent then a little more detailed 10,000 feet" overview showing the basics of how it
spec, it may (initially) refer to works. Read them both first, they should be understandable on their own.

parts of the version 1 spec, but it
should not be assumed that
anything in the V1 spec still

Then there are four interrelated sections.

applies unless specifically FE—— .
. un al
mentioned here. [_% [server Database Client spec
How different
This is one of several specification |[concepts
documents which detail the design |[WOork, across
of the Flycode application. This  [jmultiple All changes
document will refer to other co.rflp(')nents, required to the Module by
documents in this specification with links to |[Module by module Database, new Module
series and they should be read in the through the server. Lo od changes through the
conjunction with this document to [[components to existing ones. Ll
obtain a complete view of the that
current design concept. ;anlement
at
The reader of this document finctionality.
should also be familiar with the Search epistration after authenticationdomains (| What is Where;
general overview of the Flycode  [[Downloadinga || == @ o @~ form collections PLH
Product Folder & POST authenticate_check configusation LoolBar,
. Synchronization ———§—————*——— clements Download
Metrics and authent}cats chcclf cookie files Dialo
Logging euthenticate_cookie folderelements Launcher,
Registration —wzggg’{ggz userfiles Folder Explorer,
Nondisclosure Publishing and download jusers Advertising
Viewing local e Banner.
. . folders. L Search,
Use of this document and its contents and Hfileinfo
concepts is governed by a Nondisclosure DRM folder Local Folder
Agreement signed by anyone authorised %ﬁ%ﬁsﬁ POST folder W’
to be reading this. Unknown Media i\‘gigﬁr h:lsthQS T.0 gm, ’
| CI'__X




US 2002/0049760 A1l

Copyright and Intellectual Property

This document is the property of Flycode
Inc, All software code and concepts
designed under this project remain the
intellectual property of Flycode

Technical Control

Types

How things link
together

URLs

Eolder Data
Flow

V1Vv2
Compatibility

Index

This design and the contrel of the
software specifications are being
managed by:

Mitra, Flycode Chief Technology Officer.
<mitra@earth.path.net>

All questions relating to this specification
document should go to him.

Launching,

[ Authentication
& Ping
 Authentication;

Serving Files;

43

|folders_containing

folder_xml
POST index

locations
log_transfer
log_transfer_failed
log_view

logo

ping

preview_mbox
preview_download
preview_purchase
registration

POST registration submit
registration xslt

search

search form

search _xslt
software_version
thumbnail

POST thumbnail
user_folders

user folders xsit

v2ping

Periodic Actions Stateless
Authentication
<COPYRIGHT>
Server/Database

compatability

Apr. 25, 2002

FolderUpdater
Indexer.
Synchronization;
Folder
Downloader;
Systray;
Listener;
Uploader
Transfer
Manager
Transfer Panel
Authentication;
Ping;

Login;
Registry;
Directory
Structure

Right Click
Options

Then there is a Open Issues section covering outstanding issues:Not in V2.0, Questions for

Tom, Compatibility issues, Email Notes

And a References section with links to some places on the net that might help with

implementation.

Terminology: Note that the terms Folder, FileClub and Collection are synonymous.

Next Few things to do here - I'm open to reordering this, so if you have a priority please

ask, note that other items may get slotted into this order.

e Tidy up items - do anytime

o Go through inprocess.htm - see what to use, what to throw.
o Include all required bits of V1 spec, commented as unchanged.E]

e Required for work in progress now

o consider authentication redirection with POST.

® Required for items needed for May 31st Milestone - basic demo

o None

o Logging

Required for items needed for June 15th Milestone

o How to catch Windows changes to files / folders (including deleting)

Beyond that

o DRM / publishing (local Folder/editing)

o Look at Send2Friend ai ain - waiting on responses from Tom and Michel

© Searching (publishers :

o Controlling embedding file in page



US 2002/0049760 A1 Apr. 25, 2002
44

O Proxy

o Copyright

0 Update Distributed Get and incorporate here.

© Chat integration;

© Think about making URLSs cacheable e.g. file/1a2b3c
Integrating ICRA for content ratings;

o About box

o Slideshow

o

Change Log - use this if you are reading the spec regularly, note that cosmetic etc. changes
aren't listed below.

e 12 June
o Merged V1:Softare Updates into Function:Install/Auto-Update;
Server:software_version and Client:Ping . This is not intended to change the
functionality, except for removing some V1 parameters no longer required, but
it might clarify things.
O Added Server/Database compatability which is the same as V1.
e 11 June
o Merged V1:Search Request into search - no functional changes, but updated
spec to include non-documented change in V1 to add <COLLECTION/>,
o 10 June
o0 Merged V1:Registration Request into POST registration _submit - no
functional changes
o 8 June
o Ping added comment that is v2ping for combined V1/V2 server, and merge
V1:Ping into it, and defines terms exactly.
0 Merged V1:Upload Index into POST index - no changes to it.
e 7 June
0 Change to Server:ping and Function:Authenticate to handle an authentication
problem.
o Added comments and locations to replace fileinfo
« 1June
0 Changed POST folder to return collection id
O Noted that ugerids are A-Z0-9 _ and -
¢ 28 May
o0 Updated Server:POST Folder expanded to include full spec from V1 (no
changes to spec), and to be specific about how copyright files are handed
(copyright handling is not required until after Jun 15th.
o Client Folder Updater now specifies hash algorithm for collections (same as
V1)
o Added <COPYRIGHT> (post Jual5)
s 24May
o Updated PPH to use name and dir paramaters,
© Changed all places that ptptp: URLs are used (find "ptptp:" to see them all)
0 Changed all places that http://server*/file?hash=1a2b URLS are used to add
name parameter
0 Changed Folder Downloader to be clear about interface with PPH,
o Changed Server:File to have name= parameter
e 22May
0 Updated Function: Auto-Update to include installer and make it stand-alone
(without ref to V1)




US 2002/0049760 A1l Apr. 25, 2002
45

o 18May
o Clarified Options .
o Minor correction to_server:folder xslt and added example to Server:URLSs to
redirect.
e 16 May
o DRM / Preview: Working on revised preview spec in v2_preview.htm see
seperate Change log there.

m Removed conditions and preview download and preview_mbox and
preview purchase to V2_Preview, note that comment in V2 about
nofile was incorrect, it should always do a redirect.

o Edited Fupction:DRM diagram
e 15 May
o PPH

m Clarified that must generate events that get to the status line.

m Should remove illegal characters from filename of temp file.

m Clarified that on failure no action is required.

o Adult
w Not required in folders_containing until later.

e 14th May
o Updated Download Dialog to show how to select a diferent location for the
download.
e 10th May
o Moved Right-Click and Options to client.
0 Marked Some sections as Jun15 or after Jun 15 to match schedule.
o Removed Function:URLs section
o Noted incompatability between V1 and V2 for peer-to-peer component.
o Noted issue around authenticating POST's
o Added Logging to PPH and Indexer
e §th May
o Clarified authentication domain in V2.0
o Clarified actions to take for different authentiation commands
o corrected "&" to "?" in authenticate_check cookie
e 7th May
0 Registry: Clarified that FlyTemp must be on the same drive as Download,
changed the case of FileClubs, added Users key for the hotlist directory and

Searches key for the results of searches.

o Changed a couple of places where the default/example directory for a user's
clubs was shown as "My Clubs" instead of "FileClubs".

o Expanded Right-Click/Add to Hotlist to refer to Directory Structure.

e 2nd May
o Indexer can keep hierarchy of Folders, related change to Folder Updater.
e 25th April

o Updated Folder XSLT, clarified links to use etc. Please read if you are
working on the XSLT etc display.
e 24th April
o Local Folder / Editing: clarified behavior on multiple files, and how to check
for a supported file type.
o DRM - updated and more detail, also involved changing name of
server:condition to server:conditions, added preview mbox,
preview download, preview_purchase,
e 23 1d April
o Registry - designed, and initial values put into it, any module, refering to an




US 2002/0049760 A1

46

absolute path now edited to refer to the Registry entry.

o Function:Downloading - corrected to nse Folder Downloader
o Added timeline diagram to Function:Authentication
0 Deleted Client:status fine it will be the standard IE status line, driven by
standard PPH responses.
o Client:Search clarified to initialize options from registry (or could be cookie).
© Local Folder & Folder XSLT: Clarified case of "Remote Folder” link.
o Client:Uploader: Corrected URL, and that it notifies Transfer Manager, not
Transfer Panel.
o Deleted Openlssues:Dependencies, it is no longer relevant.
o Right-Click, clarified Add To Flycode.
e 22nd April
o Extended Client:Ping to cover going off-line.
o Clarify some things in Client:Folder XSLT.
e 21st April
o Client:Ping, signals Online to other modules, specifically:Folder Updater and

Transfer Panel & Indexer (which is also modified to remember changes when
offline).

e 20 April - lots of minor changes.

e}

o]
o
Q
o]

(o]

o 0 O

[¢]

Function:URLs: Deleted URL for fetching collection;
Server:registration_after redirection for after registering a user.
Server.download: correction to go to registration page afterwards.

Server:file - show where links to the Client:Launcher.

Server:registration - changed to use a "redirect” parameter instead of "hash" to
make it compatible with "Server:download”

Server:repistration submit - made into a POST, and then changed where it
redirects.

thumbnail and POST thumbnail clarify where the file stored.

Client:PPH - it doesn't return ReportData from HTTPPH to TH, it sends status
to Transfer Manager, not Transfer Panel,

Corrected Toolbar / Download - it should be active when a Folder is being
viewed, not when something is selected.

Server:folderscontaining renamed to Server:folders containing
Server:userfolders renamed to user_folders

Spell checked it!

Fixed all the broken links.

e 19 April

Q
o

Index, Launching, Authentication & Ping section - relates the four concepts
Client:Ping, Server;Ping, Server:software version, Client:authentication;
Client:Login; plus related changes to POST index; Server.authenticate;
Function: Auto-Update; Sysiray COM object; deleted Scfvcr:login.

e 18 April

[¢]

Transfer Manager - restarts downloads and Transfer Panel; including edits to
PPH (checking MD35, making filenames safe); Options; Uploader - set 2 limit;

e 16 April

e
o]

o)

Clarify a couple of things in Server:stateless
Started V2 Design Notes document as a place to put notes that aren't strictly
part of the spec, but are worth referring to.

Authentication: moved discussion of alternatives to design notes; added
Server:Authentication; Database:authenticationdomains and Server:
authenticate_form - POST authenticate check - authenticate check cookie -

aunthenticate cookie

Apr. 25, 2002



US 2002/0049760 A1l Apr. 25,2002

47
» 15 Aprl
o More changes to PPH, Uploader, Indexer (changed name from Index Updater),
DRM.

o Folder Downloader and related changes to PPH, Download Dialog;
Synchronization;
o Update: Thumbnails specifying folders;
o Clarify Systray.
e 12 April
o Client:What is Where;
o Function:Serving Files; Listener;Uploader
o PPH first draft
e 10 April
o Stateless Server: Including Database:sessions & users & userfiles
o Authentication;
o Client:Indexer, Server POST index & changes to Publishing; Folder Data
Flow;
e 9 April
o Client: Systray
e 7 April
o V1 -V2 Compatibility.
e 6 April
o Download and Synchronization:Download Dialog: URLs; P2P Fetcher;
Server: folder; Synchronization;
o Reordered Server section, added contents, checked all links
o Updated Function:Right Click.
o Client:Folder XSLT - how things shown.
e 5 April
o Client: Local Folder
¢ 4 April
o Thumbnails: Change to Server:PQST Folder; Database:Files; Client
Properties; POST Thumbnail;
® 3 April
o Client - Properties
o How Indexes get updated: Function Folder Data Flow: Server:folder hashes;
Client:Login; Client:Folder Updater

Overview - 100,000 feet =

The Flycode client and server are designed as far as
possible to approximate normal browser, web and
windows behavior.

o At its simplest, the Client browses web pages and
windows folders that are driven from the "folder
Server".

e When it selects a file, this goes via Windows
standard pluggable protocol mechanisms to the
P2P tool, this interacts with the index server and
fetches the file from another Peer.

o The fetched file is then launched, again via




US 2002/0049760 A1 Apr. 25, 2002
48

Windows mechanisms and will typically launch Windows Media Player.

« Both functions access the database, which unless mentioned here or here is unchanged from V1

o In practice, the Folder and index servers will be the same software on the same machine, but they need not
be, and in particular the Folder server could be replaced by anything including a standard web server just
serving web pages.

« There are of course, lots of variations and details not mentioned above!

Overview - 10,000 feet

Viewing a Folder
Viewing a Folder occurs in several steps.o timeline and examples

« The user is browsing a normal web page for example from a Flycode customer "Big Big Movies"

s The user comes across a URL to a Folder e.g. http://server.flycode.com:2000/folder?id=123 (or folder?
userid=bigbig&name=movies)

» This does a standard query with the browser for this page.

« The server generates a redirection to http://server.flycode.com:2000/folder_xmi?id=123

« folder xml generates the list of items and includes a pointer to http://server.flycode.com:2000/folder_xslt?
1d=123

o folder_xslt typically redirects to a specific XSLT file, and contains specficiation for viewing folders.

o The XSLT file can contain VB or Javaseript or whatever else is needed to cause the browser to render this
page properly.

» The page needs to check whether a file is local - via the Indexer's cache-checking method , and check if it
requires a licence, and if so whether it already has it via the DRM components.

e The browser now has both the content and style to display the Folder correctly.

e Note that Folders are nestable

Advantages of doing this are that:

e You can have a single stylesheet apply across multiple Folders

¢ You can change the stylesheet that a Folder uses without affecting its contents

e There can be multiple views of the same Folder by simple extensions. (V2.%)

» The system can support different Ul metaphors simultancously, for example a Folders oriented approach and
a more web like approach.

Getting to the file

Within a Folder, the files are just displayed as links. The goal is that when clicked on, it will go to the P2P fetching
component.

« If the link is just in a web page - with no guarantee of Flycode being present on the client
o then itis encoded as http://server.flycode.com:2000/file?hash=1a2b3c&name=coolvideo.avi,
o The server turns this into a web page with ActiveX Launcher on it that checks for Flycode presence
o If Flycode is absent, it redirects to http://server.flycode.com:2000/download?
redirect="ptptp://server.flycode.com:2000/1a2b3c&name=coolvideo.avi"
= This page will prompt the user to download Flycode to see the file,
o Now that Flycode is present (possibly having just been downloaded)
o It redirects to ptptp://server.flycode.com:2000/1a2b3cé&name=coolvideo.avi



US 2002/0049760 A1l Apr. 25,2002
49

V2 Architecture - Flycode Specification Page 8 of 53

« Ifthe link is in a sitnation where we know that Flycode is present then the URL is
ptptp://server.flycode.com:2000/1a2b3c&coolvideo.avi
o This goes to the PPH module, a Pluggable Protocol Handler

Fetching the File
The Flycode PPH module is a small program run when called by L.E. or something else linking to a ptptp: URL

o It receives 2 hash, from the caller, via the PPH APIL

o It will check with the [ndexer's cache, and return if available

» If not, it will access http://server.flycode.com:2000/fileinfo?hash=1a2b3c&location=1
o It will get back XML with the locations.

+ It will contact those clients - using the Distributed Get spec - to retrieve the file,

o The file is stored in the cache, and any indexes (including those on the server) updated.

Viewing the File

Once the file has been retrieved, it can - but won't necessarily - be viewed, (for example we could be downloading
a FileClub)

The file is passed to the Windows Launcher, typically this means it will end up in Windows Media Player.

Note this does not (yet) handle the case of embedding the file in a UL, if we chose this, then a slight change may be
required here instead of launching to WMP.

Function by Function spec across modules and client/server:

Search; Downloading a Folder & Synchronization; Metrics and Logging; Registration; Publishing and Viewing local folders; DRM;
Auto-Update; Thumbnails; Unknown Media Types; How things link together; URL, Folder Data Flow; V1 V2 Compatibility; Index,
Launching, Authentication & Ping; Authentication; Serving Files;

Search

e Ideally is hooked into the Windows Search Panel

The Search Panel is HTML in the left-hand-panel.

Goes to the http://server.flycode.com:2000/search?...

The results in the search are marked the same as for files in a Folder.

At the top and bottom of the screen (as specified by the XSLT file) are indicators of what the search was for,

how many results returned, and Forward & Back buttons.

Downloading a Felder and Synchronization (by Junl15)

e There might be a way to hook this into LE.'s concept of working off-line, but it does not look like it, and
anyway LE.'s way of doing this is hard to figure out for the user.

o This is launched via right-click on a link to a folder

o or ... when a remote Folder is open, there should be a "Download” button (enabled by the Launcher from the
Folder XSLT) in the Toolbar

e The download button should pop up a Download Dialog.

o Which directs the Folder Downloader; to fetch the file.

o Which checks with http://server.flycode.com:2000/folder?id=123&hash=1a2b3c to see if it needs a current




US 2002/0049760 A1 Apr. 25, 2002
50

list of the folders content

o and then iterates through the folder instructing PPH to fetch each file,

« and then moves those files to for example "Registry:Downloads/Movies - big big"

o The icon on that folder should be the Flycode icon, plus some indication of whether its going to be
synchronized.

« This does NOT change what the client views when going to http://server.flycode.com:2000/folder?id=123
but when viewing items in that folder e.g. by looking at ptptp://server.flycode.com:2000/1a2b3c?
name=coolvideo.avi it will find the downloaded file from the Flycode cache.

o The Explorer window should display the Downloads Folder, with Folders - i.e. Downloaded clubs - shown

first,
» The Synchronization component will, at startup, and periodically, check for changes and download 21l new
files

Metries and Logging (15Jun)
Server-side logging remains as current, i.e. logging the Search, and other statistics.

View and Download logging is more complex because of the integration with windows. Any link to ptpip:* ends
up at the PPH, and this can be logged. It can be logged with log_view, and if downloaded logged with log_transfer

(or transfer_failed).

Files launched directly from Windows won't be logged.

Registration (15Jun)

¢ Is moved from a dialogue to a web page http://server.flycode.com/registration and registration submit
» Is visited after installation and after each successful upgrade of the software.

Publishing and Viewing local folders.

e Local Folders are standard Windows Folders with extensions that control how they are viewed and how they
react to events like clicking and drag-and-drop.

o The initial folder is under C:/Flycode/jsmith/FileClubs but symbolic links can be created from there to any
Folder.

o Files get added and removed using standard windows mechanisms - drag and drop etc.

« Files that are added get meta-data via a Properties dialog which is automatically launched.

» A file index.xml is created in each directory, this contains the properties - or is a copy of properties that are
kept in some windows-specific location. It also has an XSLT line.

o Information about his file is sent by the Client: Folder Updater to the server with a POST folder and by the
Client: Indexer to the server with a POST index.

DRM =

Integrating DRM is a little more complex
in V2 than V1 since there are more cases to
handle, but the base code remains the same.

The key component is in the XSLT which
generates the listing in the folder.




US 2002/0049760 A1 Apr. 25, 2002
51

» The page needs to check whether a file is local - via the Indexer and display with or without a check-
mark to show the file/Folder is local

s Iflicense=1 then it should use the MLM's methods for checking if a license is present, if a license is
required but not present and there is no local copy of the file, then the link should be to
http://server.flycode.com/conditions?hash=1aZ2b&nofile=1

If possible the DRM windows should open in the Explorer Bar, this should work for the Folder Listing ->
Condition link, but might not be possible for the cases for the WMP or MLM -> Condition link.

Note the detail on most of these links in the section below on links between components.

To implement this,

MI.M: There needs to be an interface to the MLM to decide if there is a licence available on the client. This
is used by the Local Folder and by Folder XSL.T for viewing remote folders.

conditions & preview_mbox are changed slightly from V1.
All the JSP pages - such as condition* and accept* remain the same.

asp/offer (or asp/label) will need different DownloadURL and PurchaseURL, see preview_purchase for
explanation.

» Research is needed on what parameters the PurchaseURL and DownloadURL get called with, if none
ie.
if it is just the contents of the appropriate row of zI_url then we will need one row of z1_url per offer
with the URL of the conditions for that offer - e.g. http:/server.flycode.com:2000/conditions?
hash=1a2b, and another for downloading the file with the ptptp URL e.g.
ptptp://server.flycode.com:2000/1a3b&name=coolvideo.avi.

e If parameters ARE added, then the Purchase URL can probably be the same for all files, i.e.
http://server.flycode.com/preview_purchase, and it can be set at the asp/label level (and automatically
inherited by the offer), same for the DownloadURL being
http://server.flycode.com/preview download

Install and Auto-Update (15Jun)

The goal is to inform users of new changes, allowing them to upgrade easily if they wish, and to inform and
require upgrades that are neccessary to avoid servers having to be backward compatible.

The client;Ping module requests



US 2002/0049760 A1l Apr. 25, 2002
52

http://valerie.flycode.com/intranet/spec/v2 _architecture.htm#server_software version at launch and after each 60

mins (configurable) and uses this to determine if an update is required. If it is, then a seperate installer is
downloaded if the software_version indicates a new one required, and then run.

The installer is a small downloadable sclf-extracting, self-running. (It is kept small by keeping it simple, avoiding
fancy graphics, and static linking only those bits of MFC it uses).

The installer, checks a configuration file (where?) against the current situation and downloads things that have
changed as required. It can also launch other installers such as that for Windows Media Player V7, and Preview's
MLM

Thumbnails

o Thumbnails will be stored on the server,
o This will be a cross-mounted NFS directory. It could in the future also be done using a HHTTP server
internally accessed, or redirection.
o Presume they take about 3k bytes each.
o They will be stored in files called something like .../thumbnails/1/a/2/1a2b3c4dSe.jpg
o Note that the first three directory levels come from the first three characters of the hash and give us
643 = 256k directories.
¢ Thumbnails of Movies is to be done later, unless an appropriate tool is found, even then we'll probably need
to do it Peer to Peer.
s See References/Thumbnails for examples
o Microsoft's Thumbnail control might be useful for displaying, but it looks like it can only handle the original
files?
o So another component we need (3rd party, or from Windows) is an image (various formats)->thumbnail (jpg
only) converter.
Thumbnail requests will be a HTTP request so that the browser caches them.
Thumbnails are not explicitly stored on the client, they rely on the browser cache
The user interface for viewing thumbnails is defined in Client:Folder xslt
When a file is added to a collection, the Properties component is invoked,
The Properties component notifies the server via both the Folder Updater - which uses POST Folder and the
Indexer which nses POST Index
e When a Files record is created - during POST Folder, if it is of type image/*, the server should respond with
a Thumbnail required response.
« On receiving this response, the client should do POST Thumbnail?hash=1a2b3c
o The server stores this in its file system
s When a client displays a Folder in Thumbnails mode, then the XSLT (or some other mechanism chosen by
Tom) should:
o fetch the file from http://server.flycode.com:2000/thumbnail?id=1a2b
= Note that this will automatically check the browser's cache for the thumbnail.
= This may be redirected to a specific file from whichever server is hosting it.
o pass it to the Thumbnail control

Unknown Media Types (After 15 Jun)

The User Features specifies auto-installing players - e.g. Flash, QuickTime etc. This depends on the hooks
available to catch failure of Windows to launch the file. Tom to research, L if hooks arc available then much of
the previous specification for this will be incorporated here.




US 2002/0049760 A1l

Apr. 25, 2002

53

Alternatively, the XSLT could call a function when putting links on a page, and have that check for the existence
of the necessary player. It can do this by looking at the registry, and in the absence of an appropriate player, then
place a link to a server page that will point at the player,

How things link together

See the DRM diagram for many of these links.

From iTo How
'Web page
(not http://server.flycode.com:2000/folder?id=123 (or folder?
necessarily  [[Folder userid=bigbig&name=movies) generates a page that can also be displayed in the
inside Browser, and that will launch Folder extensions etc.
Flycode
hitp://server.flycode.com:2000/file?hash=1a2b3c&name=coolvideo.avi
‘Web Page File [Note that a web page can also include an ActiveX Launcher component and then
use links of the form ptptp:....
tptp://server.flycode.com:2000/1a2b3c?name=coolvideo.avi is passed to PPH
Folder List  |[File because its a protocol handler for piptp, and then to Windows launcher which
passes it to the Windows Media Player
‘Warning http://server.flycode.com:2000/conditions7hash=1a2b&nofile=1 This link is
Folder List [[aboutneed (linserted by code in the XSLT for the folder based on the absence of both license
for license  {land file.
?air(lidtll?eor?to If WMP detects that a license is required but not present then it goes to the
WMP license [Purchase URL http://server.flycode.com:2000/conditions?hash=1a2b (This
urchase) requires a change to the DRV)
Windows g\ p asfis specified to open in WMP
Launcher
It doesn't - a component does something with a URL that starts "ptptp:", Windows
notices that there is a Pluggable Protocol Handler for "ptptp:" and then uses the
PPH Anywhere  [[PPH to get the file or folder, which is then passed along with the action the
component has taken. Because this is usually an Open then the file will typically
end up in LE. (if its a Folder) WMP (if'it is a video) or somewhere else.
If a user clicks on a license then it either launches the file directly in WMP, or uses
MLM Listing {[WMP (direct [ithe Download URL which will be ptptp:/server.flycode.com/1a2b?
of licenses or via PPH) [mame=coolvideo.avi and then launches in WMP. (This requires a change to the
DRM)
?a(r):ldtl.‘ttl?;lto If the license is expired the MLLM Listing directs to the Purchase URL which will
MLM Listing license be http://server.flycode.com:2000/conditions?hash=1a2b (This requires a change
ourchase) to the DRM)
The license purchase generates a .mbox file - this is returned and launched by the
License WMP 'Windows Launcher (unlike V1 which returns and stores this directly) which
Purchase launches it in the MLM, which fetches and saves the license and then launches the
file in WMP.




US 2002/0049760 A1 Apr. 25,2002

54
?nothairjes A file licensed by someone else will contain their purchase URL, and launch their
WMP li?:lv;gmg web page, which should generate an Mbox file which then proceeds as for License
Purchase -> WMP.
process
Folder Data Flow

Meta-data in Folders flows as follows.

o When a file is added to a local folder a Properties dialog is popped up.
o This dialog requests Meta Data and stores it in index.xml in that Folder

o it might also store it in some Windows-specific place
o Ifthe client is off-line, then:

o the next time the client goes online the Folder Updater module will request

http://server.flycode.com:2000/folder_hashes and updates any that have changed with POST Folder
e Ifthe user is online, then the Folder Updater contacts the server with POST Folder
o The response to this can request Thumbnails.

The Indexer keeps the indexes up to date with POST index.
o The folder information is parsed on the server and stored in the database.

V1 - V2 Compatibility

The database changes specified in the Database section are all compatible between V1 and V2, i.e. once the
changes are made both servers can coexist on the same data.

In particular, where V1 servers update a record in users or collections they will leave blank the XSLT field, which
will be assumed by a V2 server to mean use the default XSLT specified in the configuration parameters
url_folder xslt and url user_xsit. -

Folders containing sub-folders will show up in the folderelements table. V1 clients viewing these sub-folders will
not see the extra folders.

There would be one possible problem if a V2 folder with sub-folders was created, and then the same user switched
back to V1 and tried to edit the collection.

It is unknown whether V1 and V2 clients can coexist on the same machine, with the same work-area, I suspect
NOT and suggest this level of compatibility is a waste of our effort. Instead V2 client should either replace the V1
client, OR be setup with a different data directory.

Note that V1 and V2 clients can NOT interwork at the level of moving files between them. This could be
accomplished if required by change "file" to "GetFile"

Index, Launching, Authentication and Ping
It is important to distinguish between three concepts which are separate in V2, but were together in V1.
« Index - the process of telling the server that a particular user and set of files is online at a certain IP address.

o Launching - starting one or more of the components of Flycode
e Authentication - proving that the user is who they say they are.



US 2002/0049760 A1 Apr. 25,2002
55

o Ping - telling the server we are still online.
In a typical scenario,

+ At PC startup, the Launcher is run,

o This will start various components including the Indexer module.

o The server checks a cookie, and if absent redirects the client to HTML forms, to authenticate that this is
really who the user says they are

» The Ping module connects to the server to tell it that the user is online, and check software version.

Authentication (Dummy by Mar 30, real after Jun 15)

Authentication command by command
Some commands need to be authenticated, in V1 the authentication could be part of the Login command (that was

how it was implemented, not how it was specified!). In V2 this is not possible, because different commands may
hit different servers, and the server can drop the HTTP connection between commands.

This table categorizes the relationship between server commands and authentication.

Browser or
Category our code Commands
Need authentication - because we need one
command that can be used to force Client ping
authentication
[Need Authentication because write to database
Check the user 1s the owner of the folder being|[Client POST folder
written

Need Authentication because logging with
someone's name. Cli
Just need authentication to check that we have ent
a name for this user

log_transfer - log_transfer failed -~ log view

[Need Authentication because behavior Browser conditions, preview_mbox,
depends on user's identity, just needs to make -
the userid available to the command. Client folder hashes
Don't need authentication in this version, but folder - folder ximl - folder xslt - search -
will need Authentication if reading private Browser thumbnail - user folders - user_folders xslt -
[resource in later versions. [preview_download -

Client fileinfo - preview purchase -
Don't need Authentication ining - - -

Browser folders containing - logo - search form

scarch xslt
Must not be Authenticated because can be run B download - file - registration -
Towser N - ST
by non-members. registration submit - registration xslt
I |




US 2002/0049760 A1l Apr. 25, 2002
56

“&rt of the authentication process J[Client nggg JI

Authentication Alternatives

See V2 Design Notes: Choices for Authentication for a discussion of alternative methods for authentication.

The authentication method chosen is to redirect to a login page when required, request password and then set a
cookie.

Authentication Requirements

There are a number of requirements that must be met by this spec, which is why it looks a little more complex than
at first glance would seem necessary.

e There is a necessity for cross-domain authentication, in both directions e.g.
o User viewing a web page generated by bigbig.com, needs authentication by Flycode.
o User viewing a Flycode page, needs authentication by iportal.com
o User viewing a bigbig web page, needs authentication by iportal.com
¢ You can't set a cookie in one domain (e.g. Flycode) and read it in another (e.g. BigBig)
A password must only be entered on a web page belonging to the domain doing the authentication.
» If a user is anthenticated for one service, it would be good to be already authenticated when using another
service.

Authentication Overview

The following diagram illustrates the time sequence, note that the Auth Server and Web/App Server are the same
thing, but do NOT have to be, so there can be no communication between them except via "Redirect", also that the
"Server” has no access to the database.



US 2002/0049760 A1 Apr. 25, 2002
57

o The server command checks a cookie, and if not present redirects to (a possibly different server or domain)

o authenticate form : which puts a form together, which when submitted goes to

o POST authenticate _check : which checks it against the database, and if it matches redirects to

« authenticate check cookie : which confirms successful cookie writing and redirects (back to the original
domain) to

» authenticate cookie : which sets a domain-specific cookie and redirects back to the server_command.

This sounds complex, but each command is really simple, and it handles all the different cases, and various ways
that people might try and hack it.

Note there are two problem cases that need solving - redirecting a POST, and redirection to a form when its
a non-interactive command. These need addressing - to do this ...

o The client will try and authenticate ping - there are three possibilities.

o There is no response - we are offline, so the client will try again later.

o The server responds with a Redirect, the client passes this to the browser which goes through the
authentication process, All otehr client processes continue as if the client was offline until a successful
ping is performed.

o The server responds with the <STATUS> reply as normal, and the client continues with other
commands.

Serving Files



US 2002/0049760 A1l Apr. 25,2002
58

o Peers are directed to this Peer by the information contained in a response by the Server to fileinfo?
hash=1a2b

o They hit us on port 3000 - or some other port we will define (Move port to higher number)

On this port is the Listener - which accepts the TCP connection, and parses the HTTP command.

The HTTP command GET File is passed to the Uploader module.

The Uploader checks with the Indexer to see if we have a file, and if so where.

The file is fed back to the TCP connection.

Changes to Database required and Migration plan and complete new
Database spec

A list of changes required. See also the working document on other database changes not specific to V2.

Please note the V1-V2 Compatibility section, which will need changing if anything in here breaks compatibility.

authenticationdomains

Column Datatype [Description/Comments

rowid uint autoincrement

domain CHAR40 |Domain of service - e.g. "bighig.com"

secret1 CHARA40 |Random string shared between bigbig.com and Flycode

. URL of cookie gen page at domain e.g. http://www.bigbig.com/cgi-

cookiegen CHAR255 bin/authentication_cookiegen"

collections

Column Datatype|Description/Comments Why
Stylesheet used for this Folder. See

xslt CHARB80 |Note that in the future this might be replaced by one more level of Server:
indirection. folder xslt

configuration - extra rows

See the list of URLs that are used for redirections.

|| Valuename [ Example Value I Description ”
elements

Column Datatype |Description/Comments ‘Why
keywords CHAR?2S55|Keywords - not displayed, but searched on

files



US 2002/0049760 Al Apr. 25, 2002
59
Column Datatype|Description/Comments Why
thumb FASHE g0 if there is a thumbnail present
binl CHARL if there is a thumbnail present.
folderelements

This table contains folders that are elements of another Folder.

Column Datatype jDescription/Comments

rowid uint autoincrement

collectionid uint rowid in collection table for where the element appears

name CHARGO |name of folder as it appears in this folder

time_added datetime  {time at which the Folder element was added

linkto uint rowid of collection table for Folder being linked in.

description CHAR2S5S [file club owner's description of Folder

collections_private| CHAR1 |1 if the collection is private, and therefore the elements should not be searched.

sessions
Column Datatype |Deseription/Comments
rowid uint antoincrement
user's login id (note that there may be multiple records with a single userid)
userid USERID
consistency should check this matches a row in "users”
time_created |datetime Unix timestamp when user logged in.
location IPPORT TP Number and port expressed in hex
authenticate |CHAR255 [Cached Authentication response (note that this is used only for V1 clients)
port uint port to contact the client on
indexhash |[HASH hash supplied with Upload_Index
pingtime DATETIME(time of last ping
userfiles
Column Datatype|Description/Comments Why
userid | SFAR4O
sessionid uint rowid from sessions table.
users
Column Datatype |Description/Comments Why
xslt CHARRBO |XSLT file to use for user, may be NULL




US 2002/0049760 A1l Apr. 25, 2002

60
autheptieate CHARI S8 | Ceehed-Anthentiention-response
port : -
thread
userid Restricted to A-Z0-9_and -
Server:

Note that all these commands are additions to the V1 spec, the V1 spec commands will not be required once V2 is
operational, but several of the commands here are defined in terms of the V1 spec.

registration_after - authenticate form - POST authenticate _check - authenticate _check_cookie -

authenticate cookie - comments - conditions - download - file - fleinfo - folder - POST folder - folder hashes -
folder xml - folder xslt - folders_containing - POST index - locations - log_transfer - log_transfer failed -
log vxew logo - p_g prev1ew mbox-prewgw download -prev1ew purchas egstratlon POST

thumbnad user_folders user. folders~xs1t VZDIHE Penodlc Actions - Stateless Authenncatlon-
<COPYRIGHT> - Server/Database compatability

authenticate_form?domain=xyz.com&redirect=http://www.xyz.com/aaa/bbb

Timeline needed

Generate an authentication form for logging in to the Flycode. Include

hidden fields for domain and redirect and fields for userid and password Please login to Flycode:
and to remember the password

o If error="xxx" is present then display this error. (For example Logmi
"password didn't match™)
» Else if the cookie Authenticate_login is present, then redirect to Password |
authenticate check_cookie?
domain=xyz.com&redirect=http://www xyz.com/aaa/bb ™ Remember password on this
machine

Form when submitted goes to POST authenticate check.

POST authenticate_check

This should if possible be https, Assume it receives fields "userid=jsmith", "password=xyzzy", "remember=n"
from the form, and "domain=xyz.com" and "redirect=http://www.xyz.com/aaa/bbb" from hidden fields.

1t checks the userid and password fields against the database.

o If they match then:
o set cookie "Authenticate login=jsmith:1a2b3c" where 1a2b3c=MD3( jsmith ":" password ":" secret)
and secret is a secret specific to authenticate_check and authenticate_cookie,
= Ifremember=1, then the cookie should be set not to expire, otherwise it should be a session
cookie.
o redirect to: authenticate check cookie?



US 2002/0049760 A1 Apr. 25,2002
61

domain=xyz.com&redirect=http://www.xyz.con/aaa/bbb&remember=n

» else redirect to authentication form?
domain=xyz.com&redirect=http://www.xyz.com/aaa/bbb&error=Password%20does%%20not%20match

authenticate_check cookie?
domain=xyz.com&redirect=http://www.xyz.com/aaa/bbb&remember=n

This has two functions - either check an existing cookie passed to the authenticate form page, or check that the
authenticate check successfully stored a cookie on the client.

« Read and parse the cookie "Authenticate_login=jsmjth:1a2b3c"
o if there is no cookie: redirect to authenticate form?
domain=xyz.com&redirect=http://www.xyz.com/aaa/bbb&error="You must enable cookies to login to

Flycode"
e elsif 1a2b3c=md5(jsmith ":" password ":" secret)
o then redirect to http://xyz.com/authenticate cookie?
redirect=nhttp:/www.xyz.com/aaa/bbb&userid=jsmith&ok=5f6g&remember=n where:
o hitp://xyz.com/authentication_cookie came from the cookiegen field of the authentcationdomains table
and 5f6g = MD5(jsmith ":" secret)
o and secret is a secret known only to xyz.com and Flycode and comes from the authenticationdomains

table for this domain.
o else redirect to authenticate form?domain=xyz.com&redirect=http://www xyz.com/aaa/bbb to rerequest a

password.

authenticate_cookie?
redirect=http://www.xyz.com/aaa/bbb&userid=jsmith&ok=5f6g& remember=n

This page runs in the domain where the service required exists, which might not be the same as the authentication
server.

Check the ok=5f6g field, where 5f6g = MD5(jsmith ":" secret) and secret is the secret shared with Flycode in the
authenticationdomains table for this domain.

o Ifit matches
~ » then Set a cookie "Authenticate_Flycode=jsmith:566g" where 5f6g is the ok; redirect to the redirect URL.

o If remember=1 then set to not expire, otherwise make it a session cookie.
» Else log an error, delete the cookie, and redirect to http://www.xyz.com/aaa/bbb (which will redirect on to

authenticate form)
comments?hash=1a2b3c&start=10
Returns a list of comments for a hash from the comments table. This a subset of the V1:GetFileInfo command.
At the moment this is not used in the User Interface for V2 and is not required.

If any comments are found the server should return a 200 status and an XML file, otherwise it should return a 204
and no data.

If the result_set includes comments and the comment_start paramater is present, it specifies where in the list of



US 2002/0049760 A1l Apr. 25,2002
62

comments to start sending results.
Comments are presented according to an algorithm that might be changed later:

« First comments from the collection (as specified in the call) are listed in reverse DATETIME order (newest

first)
e Then comments not in any collection in DATETIME order
e Then comments from other collections. in DATETIME order
o Only the first 10 are returned.

Content-Type: text/xml
Content-Length: 123

<?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE Flycode SYSTEM "hitp//www.{lycode.com/support/flycode.dtd">

<COMMENTS>

<COMMENT userid="jsmith" datetime="98765432" text="1 like this shot, taken at sunset"/>
<COMMENT userid="mpatel" datetime="98765432" text="1 wish he'd learn to focus"/>
</COMMENTS>

Comparisom with V1:GetFileInfo: This just looks for comments, and so doesn't have to do any joins, it omits a
couple of layers of wrapper XML from the result.

conditions?hash=1a2b3c&nofile=1
See V2_Preview.htm: conditions;

download?redirect=ptptp://server.flycode.com:2000/1a2b?name%
3dcoolvideo.jpg&referrer=http://....

This page prompts the user to download Flycode, it should carry the redirect through any subsequent screens, and

then redirect to it, via the registration page by going to http://server.flycode.com:2000/registration?
redirect=ptptp://server.flycode.com:2000/1a2b?name%3dcoolvideo.jpg after downloading.

file?hash=1a2b3c&name=coolvideo.avi

This needs to direct the client towards getting the file. But, at this point the server does not know if the client has
any Flycode components installed.

So this generates an HITML file as described in Client:Folder XSLT

folder?id=123 or ?userid=bigbig&name=movies [ &hash=1a2b3c¢ ]

This has to generate a page that the client can display.



US 2002/0049760 A1l Apr. 25,2002
63

In the future, if we support multiple ways of representing Folders then it might follows the chain Folders -> styles,
and uses the parameters from the styles to generate the page, but for now it just does a redirect to:

http://server.flycode.com/folder_xml?id=123

If called with the userid and name parameters it should look these up and generate the redirect with the id=123
parameter.

If the hash parameter is appended then the server should check the collections.hash field, and if the hash matches
should return a result-code of 204 and no data, which the client can interpret as meaning that there is no change.

POST folder?id=123
The server should receive a POST contain an XML file with information about each file in the collection.

e The server uses id=123 to locate the folder by its rowid

o if no "id" is specified then this is a new collection, except that if it has the same name and owner as a
previous collection then it should replace that collection. (This would be the case if the index.xml file
got trashed).

o The server should check the hash and oldhash attributes.

o Ifthe client has included a "hash" attribute of just " then the Collection has been deleted. Delete from
the Collection table and all the relevant elements from "elements" table.

o If the Client has included a "oldhash" attribute in the COLLECTION element, then this should be
checked against the "hash" field of the "collection” table.

a Ifit doesn't match, the server should respond with an HTTP 404 error, and the client should re-
send a complete list with no "oldhash" value.

o If no "oldhash" attribute was supplied then this is a replacement, the server should query the
collelements table, delete any files that are no longer in the collection. Then, add any new ones - and
set their timestamp to now, and update the information (but not the timestamp) on any files that
remain in the collection.

o If a matching "oldhash" attribute was supplied, then this is an incremental update, then for each file supplied:

o Ifthere is a oldhash but hash="" then it is a delete, delete the element.

o Ifthere is a oldhash and hash value its a change, update the information, but not the timestamp. Note
that oldhash=hash is valid and means that the description was changed but the file not changed.

o Ifthere is a hash but no oldhash then add the file and set the timestamyp

o The Server should then set the hash field in the collections table to the "hash” value supplied.

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE Flycode SYSTEM "http://www.flycode.com/support/flycode.dtd">
<COLLECTION id="123" name="India" description="My photos of India" private="0" oldhash="1a2b3c4d"
hash="5e6{7g8h9i0j1k"

keywords="india,elephants,dethi">
<FILE hash="1a2b3c" type="image/gif" adult="0" description="Taj Mahal" creator="F.Smith"
file_size="23023" />
<FILE hash="4d5e6f" type="video/avi" adult="0" description="Elephants at the Taj" creator="F.Smith"
file_size="1234567" oldhash="12345abcde"/>
<LINKFOLDER id="345" name="Bruce's Videos" description="Bruce has good taste in videos" adult="0">
</COLLECTION>

Note that the userid of the folder MUST match the authentication to allow this.



US 2002/0049760 A1l Apr. 25,2002
64

If the server has to create any records in the files table, then it should check for Thumbnails that are not present by
checking that files.thumb=1.

If it is a new collection, then a 200 return code is sent back along with a content.

<7?xml version="1.0" encoding="UTF-8"7>
<IDOCTYPE Flycode SYSTEM "hitp://www.flycode.com/support/fiycode.dtd">
<COLLECTION id="123"/>

If there are any thumbnails missing then a 200 return code is sent back along with a content.

<?xm] version="1.0" encoding="UTF-8"?>

<!DOCTYPE Flycode SYSTEM "http://www.flycode.com/support/flycode.dtd">
<THUMBNAILSREQUEST>

<FILE hash="1a2b3c"/>

</THUMBNAILSREQUEST>

If both thumbnails and collection id are missing then these can be grouped and returned with a 200 return code..

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE Flycode SYSTEM "http://www.flycode.com/support/flycode.dtd">
<GROUP>

<COLLECTION id="123"/>

<THUMBNAILSREQUEST>

<FILE hash="1a2b3c"/>

</THUMBNAILSREQUEST>

</GROUP>

If they are all present, then a 204 return code is returned, and no content.

Note that for ease of coding, it is totally valid to enclose just the single (STHUMBNAIL> or <COLLETION> in
<GROUP>) or to return empty content with 200 and empty GROUP

The collections:size field should be maintained by this operation, i.e. incremented for every element added, and
decremented for every element removed.

If the message includes any files with copyright >1 - other than deleting them from a collection the files should not
be added to the table or into the MD35, but the operation should still succeed. Files with copyright = 1 may be
added to a collection. For any files that are not added, a <COPYRIGHT/> message should be generated and
returned with a return code of 200 (note this doesn't have to happen till after Jun 15).

Otherwise, the server responds with a success code of 204.
If there is an exception or invalid XML then return failure code of 400.

Comparison with V1:Upload_Collection

s The server uses the id to locate the collection rather than userid and name of collection.
o Only one folder should be uploaded at a time (unlike V1 where multiple collections could be in each
command).



US 2002/0049760 A1l Apr. 25,2002
65

o A <COLLECTION> element previously only contained <FILE> elements, it may now contain links to

FOLDERS.
o The COLLECTION may specify keyboards separate by commas
o COPYRIGHT problems are returned inside the 200 error code (which may or may not be the same as V1).

folder_hashes

Return a list of hashes for the Collections belong to the user, See Function: Folder Data Flow and Client:Folder
Uploader for how this is used.

<COLLECTIONS>
<COLLECTION name="India" description="My photos of India" private="0" hash="1a2b3c4d5e6{7g8h%i0j1k"/>

<COLLECTION name="Pets" description="My furry critters" private="0" hash="1a2b3c4d5e6{7g8h9i0j1k"/>
</COLLECTIONS>

Comparison with V1:<SUMMARY>
o this is the same, except that it should have a <COLLECTIONS> outside object rather than <SUMMARY>,
folder xml?id=123
This has to generate a page that the client can display.
A typical page might look like
<?xml version="1.0"7>
<?xml-stylesheet type="text/xsl" href="http://server.flycode.com/folder xslt?id=123"?>
<folder>...</folder>
Why mix data and rendering? Note that the XSLT is embedded here because it is not currently possible to
separate them out and generate a higher-level file that allows generation and reuse of XML which does not refer to

the stylesheet.

What about CSS? This would be an alternative, CSS has the disadvantage of not being able to do a
transformation, it can only render elements of the XML..

folders_containing?hash=1a2b [ &adult=0 ]
Equivalent to a search, but just retrieve folders containing this file.

SELECT collections.* FROM collections,elements WHERE elements.hash=1a2b &
elements.hash=collections.hash

The adult flag does not need to be supported until later.

POST index?oldhash=1a2b&hash=3c¢4d

The server should receive a POST containing an XML file of the hash value for each file available from the user's
machine.



US 2002/0049760 A1 Apr. 25,2002
66

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE Flycode SYSTEM "http://www .flycode.com/support/flycode.dtd">
<FILE_INDEX>

<FILE hash="1234567890123456789012"/>

<FILE hash="5678901212345678901234"/>

</FILEINDEX>

The server should check for a record in the sessions table for this IP number and port. (It is important to test both
IP number AND port, to distingnish clients connecting through the same HTTP Proxy server). If there is no session
record that matches, then create one.

If oldhash is not "" then it is compared against the sessions.indexhash, if it does not match then a 404 error is
returned, no changes made to userfiles, and the client will do a full upload.

If oldhash ig " then this is a full npdate, if there was an old record, then all files for this session should be removed
from userfiles,

If the oldhash matches sessions.indexhash then this is an incremental update,

In the case of either oldhash="" or oldhash matches sessions.indexhash then each hashe should be added to
userfiles with the session number.

If there are any files in the list with copyright >1 then a <COPYRIGHT....> message should also be returned, files
with a copyright >0 should not be added to the database, the operation should still complete successfully.

A success code of 204 should be returned, unless there is a <COPYRIGHT> message returned in which case it is a
success code of 200.

Comparisom with V1:Upload Index

s Works almost the same except for the hashes:
e Note that I believe the V1:Upload Index does NOT work according to the V1 spec, and does incremental
indexes currently.

locations?hash=1a2b3¢

This is equivalent to the existing GetFileInfo, returning a set of LOCATION. This a subset of the V1:GetFileInfo
command.

The server should look up the hash in the "userfiles" table, If the hash is not found, then a 204 status is returned
and no locations. If the hash is found, then the server should return a 200 status, and an XML file.

The server returns Location information neccessary for the client to select a source, and do a GET file. Note that
this is separated from the search results so that it can be done as late as possible, to maximize the chance that the
chosen location is still available. The Server should look in the "userfiles" table for this hash and join against the
sessions table. If there are no locations online then an empty <LOCATIONS> element is returmed, with no
<LOCATION> elements.

Content-Type: text/xml
Content-Length: 123



US 2002/0049760 A1l Apr. 25, 2002
67

<?xml version="1.0" encoding="UTF-&"7?>

<IDOCTYPE Flycode SYSTEM "hitp://www.flycode.com/support/flycode.dtd">
<LOCATIONS>

<LOCATION ip="abcd1234" port="3300">

<LOCATION ip="1234abcd" port="3300">

</LOCATIONS

Comparisom with V1:GetFileInfo: This just looks for location and so is a simpler SQL than in V1, not requiring
joins against Files or Elements tables, it omits a couple of layers of wrapper XML from the result.

log_transfer?hash=1a2b3c&ip=1.2.3.4&filesize=12345
log view?....
log transfer failed? . (all 15Jun)

All work the same way as currently, except change the case/underlines of the command to be consistent.
ping or v2ping

Ping is used to tell the server that the client is still online, update the ping time in the sessions record, and return a
<STATUS> message as for V1:Ping (note this is lower case "ping", compared to V1 upper case "Ping")

Note that ping is authenticated, this allows it to be used as a command to force authentication to happen. See
Function: Authentication.

The client should send one of these commands every 5 minutes (configurable) and I suggest the server times out
anything it hasn't heard from in 10 minutes, and this should be configurable.

There will be somewhere on the V2 client which should give an indication of how many files are online. I suggest
something like.

1234 collections containing 123456 files, 75% of which are online, with the count being updated periodically (15
mins)

The server should retrieve COUNT Collections and COUNT FILES and COUNT userfiles. (See note of variance)
This <STATUS> element scts variables that can be used anywhere in the client UL In this case it will look like.

For efficiency, the server should cache this result and only check every few minutes {Currently it does every 2
mins).it then works out the rate of adding and send ..

<STATUS countcollections="1234" deltacollections="12" countuserfiles="12345657" deltauserfiles="123"
countusersonline="1234" deltausersonline="-5" sumsizenserfiles="123456" deltasizeuserfiles="123" />

The meaning of these is...

Value Meaning pseudo-SQL
countusersonlineNumber of people online COUNT sessions




US 2002/0049760 A1l Apr. 25,2002

63

‘Total number of files online,
countuserfiles counting each duplicates COUNT userfiles
countcollections TOt&.ﬂ mumber of collections on or COUNT collections

offline

. Size of files online, counting each  SUM(files.filesize) FROM userfiles LEFT JOIN files ON|

sumsizeuserfiles R

duplicates files.hash = userfiles.hash

Delta is so-much per minute,

Difference with V1: countusersonline is just COUNT sessions instead of COUNT users WHERE online >0
Spec variances: For the combined server this is v2ping instead.

preview_download
preview_mbox
preview_purchase

See V2 _Preview htm: preview_download; preview_mbox; preview purchase;
registration?redirect=ptptp://server.flycode.com:2000/1a2b?name%3dcoolvideo.avi

Generates a HTML form for registration, do this by generating an XML form, so that we can brand it in the future.
The <USER> tag should be filled in if the command is authenticated, if not authenticated it should be left blank.

<7xml version="1.0"7?>

<?xml-stylesheet type="text/xsl" href="http://server.flycode.com/registration_xsit"?>
<USER userid="jsmith" email="jsmith@nowhere.com" notice="12">

<REDIRECT file="ptptp://server.flycode.com:2000/1a2bname=coolvideo.avi">
</USER>

The HTML generated by the XSLT should contain Javascript or VB to check the values before submitting.
The HTML form should then be submitted to POST registration_submit.

POST registration_submit

When Flycode is first installed, the new member undertakes a registration process. The is handled by the following
message:

The server receives a Simple POST:

POST /registration_request

Host: server.flycode.com

Accept-Language: en, fr;q=0.5

Content-Length: 54

Content-Type: application/x-www-form-urlencoded



US 2002/0049760 A1 Apr. 25, 2002
69

userid=jsmith&password=alb2c3d4&email=jsmith@nowhere.come&notice=12&connection_speed=56k
&redirect=htip://server.flycode.com:2000/registration_after

The server should look up the userid in the "users" table.

The password is created by the client from the password entered by the user, MD35(userid “flycode.com:'
password). This means that the plain-text password is never sent across the net which is important because its
probably used by the user on other web sites. This is the only time that the hashed value is sent over the net, and
ideally this call should be hidden in the future by HTTPS.

If the userid is not in the table, then the server should add the record, and add the password hash, and redirects to
the redirect supplied, or if that fails to http://server.flycode.com:2000/registration_after

If the userid is in the table, AND this message is authenticated to come from that user, then the registration
information and hashed password is updated, and a status code of 204 returned and it redirects to the redirect
supplied, or if that fails to http://server.flycode.com:2000/registration after . Note that it is not possible for this
request to change the userid.

If the userid is in the table, but this message is not authenticated from that user, then a status code of 400 should be
returned with a string "NAME _FAITL". Note this can occur in two cases, either an unathenticated attempt to
register a user with an already existing name. Or an unathenticated attempt to change a registration. (its not clear if
this can ever happen in V2)

If the data doesn't pass basic tests then it generates an XML document with errors specified, e.g.

<?xml version="1.0"7>

<?xmi-stylesheet type="text/xs]" href="http://server.flycode.com/registration xsit"?>
<USER userid="jsmith" email="jsmith.nowhere.com" notice="12">

<ERROR tag="email" text="Not a valid email address">

</USER>

Comparisom with V1:Registration_Request: Error handling is different. Instead of a 204 return code on
successful new or updated registration, then , there is a redirection to the "redirect" parameter supplied.

search?search_start=0&title=Taj&type=image&online=1&adult=1&keyword=
The server receives a GET containing paramaters for the search,

GET /search?search_start=0&title=Taj&type=image&online=1&adult=1&keyword=

Host: server.flycode.com

Accept-Lanuage: en, fr;q=0.5

The server should search the "elements" table, the exact match between the query and the search is to be defined
later, for now, a title of "Taj" should be matched against "Ta)" appearing anywhere in the title field.

Any file with copyright >0 should not be returned.
If type is specified, one or multiple times,then only files with that type or type-prefix are returned, type=club is

used for file clubs. For example "type=image" would mean just to return images, "type=club&type=video" would
return videos and clubs but not images. If type is not specified then everything is returned.



US 2002/0049760 A1l Apr. 25,2002
70

If online=1 is specified then only files which are online are returned.
If adult=1 is specified then only files with adult <=1 should be returned (i.e. those not specified as adult).

The search_start identified the number (starting with 0) of the first record to send in the result. Since the client is
likely to send subsequent requests for the remaining pages of results, the server should cache the results of the
search. Note that SEARCH_COUNT in the result is therefore one more than the index of the last search result. The
number of results returned in each response should be a configurable parameter.

The server should construct an XML document to return of the form, and return it with a success status code of
200.

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE Flycode SYSTEM "http-//www.flycode.com/support/flycode.dtd">

<?xml-stylesheet type="text/xsl" href="http://server.flycode.convsearch xslt"?>

<SEARCH_RESULTS search_start="0" search_end="50" search_count="75">

<COLLECTION private="0" userid="jsmith" filesize="10" name="India movies" description="Some pics"

hash="1a2b3c"/>

<FILE hash="4d5e6f" name="taj.gif" type="tmage/gif"" adult="0" creator="jsmith"
description="Taj Mahal" file size="23023"/>

<FILE hash="7y8u9i" name="elephants.avi" type="video/avi" adult="0" creator="mpatel"

description="Elephants at the Tzj" file_size="1234567"/>

</SEARCH_RESULTS>

If there are no results to the Search, then an empty SEARCH RESULTS is returned, with search_start =
search_end = search_count = 0,

Comparisom with V1:Search Request: Adds an XSL line to the results.
software_version
Request the current software version, which should be returned in the same format as during a V1:Login

The server extracts AVLCLVER, MINCLVER, SETUPURL and SETUPVER values from the database
configuration table, and returns:

<SOFTWAREVERSION setupversion="20" setupurl="http://www.flycode.com/bAb00/flycodesetup.exe"
available="35" required="35"/>

Other paramaters can be put in here, but ONLY if the spec is changed first.

Comparisom to V1:SoftwareVersion: The V1 function had evolved beyond the spec! V2 no longer needs to
return the V1 parameters: serverversion, dbversion, uploadport, uploadserver.

thumbnail?hash=1a2b
Redirect to the thumbnail file. See Function:thumbnail for where it goes.

POST thumbnail



US 2002/0049760 A1 Apr. 25, 2002
71

POST Thumbnail is used to upload a thumbnail, it is a standard HTTP POST with a file attached, it should contain
a parameter hash=1aZb specifying the hash of the file that this is a thumbnail of.

o If the files.thumb field for this hash=0
o then the thumbnail should be stored (See Function:thumbnail for where it goes) and the files.thumb field set

to 1, and a return code of 204 sent.
 Else return 404 Thumbnail already exists.

user_folders?userid=jsmith

Displays a page relevant to the user, specifically a list of all folders belonging to that user. This is basically
equivalent to V1:Get_User Collections.

<¥xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="http://server.flycode.com/user_folders_xslt?userid=jsmith"?>

<COLLECTIONS>

</COLLECTIONS>

URL's that redirect via the configuration table

Each of these URLSs reads a parameter from the configuration table, and redirects to it, if a query is specified, then
the value from the configuration table is only returned if the Query returns blank or nuil

Why redirect? Because although its marginally less efficient the first time, the file can be cached at the browser,
significantly speeding up viewing of the same page again, or of other pages that use the same file.

For example the server command /folder xslt looks up the configuration paramater url folder xslt and finds
http:/Awww.flycode.com/v20status/folder.xslt and sends a redirection to it.

. 'Value, for first release
Configuration 20> <

parameter "http://www.flycode.com/v20static”

'What, and any

URL Query requirements.

‘When user
clicks on Logo
button in the
toolbar.

logo url logo <v20>/userstart.htm

‘When user
clicks on
Search button
in the toolbar,
contains form
for searching.
See
Client:Search

For presenting

search_xslt url search xslt <v20>/search.xstl results of
Search.

search_form url_search_form <v20>/search_form.htm




US 2002/0049760 A1

user_folders xslt?
userid=jsmith

SELECT xslt
FROM user
'WHERE
userid="jsmith"

72

url_user_folders xslt|f<v20>/userfiles.xslt

Apr. 25,2002

For presenting
list of user's
folders, could
be customized
by user with

[llogo etc.

registration_xslt

url registration xslt

<v20>/registration.xslt

The styleshest
for the
Registration
form. It should
contain a
submit button,

folder_xslt?id=12

SELECT xslt
FROM
collections
'WHERE
rowid="12"

url_folder xslt

<v20>/folder.xslt

Future: the
style field
might point at a
[URL that
generates the
stylesheet
dynamically, or
be replaced by
one more level
of indirection.

registration_after?
redirect=xxx

(looks forpage
specified in
"redirect")

url_registration_after|<v20>/registration after.htm

Start page the
user goes to
after a new or
updated
registration if
they are not
registering as
part of clicking
onalink to a

file.

Periodic Actions

To be completed -

¢ There may be more changes here, but the presumption is that all periodic actions of V1 remain the same.

o Users should be cleaned up when two pings have been missed, so make this 10 minutes

o At cleanup of a user, when the files are deleted from userfiles, it should delete the sessions.indexhash

Server going Stateless

The V1 server does not appear to retain state (outside of the database) between commands, but it does use the
presence or absence of a TCP/IP session as an indicator of whether a user is logged on, and records files by user.

The new server needs to be Stateless, so that commands can happen on separate servers, at the same time. We do

this with a "sessions" table that keeps state between TCP/IP sessions from the same client.




US 2002/0049760 A1l Apr. 25,2002
73

The following changes to the V1 server should allow it to support both V1 and V2 clients. It is hard to give an
exact specification to the changes because it is not clear exactly how the V1 server works, it does NOT match the

V1 spec.

Make changes to the users table, these have implications to other code.

Review sql.ini to check for accesses to the fields now moved to the sessions table.

V1:Login needs to update the sessions table instead of the users table.

V1:Disconnect needs to update the sessions table instead of the users table, and remove all userfiles that

match that session.

Periodic cleanup will need medifying to delete from the sessions table, and userfiles for that session.

e V1:Upload Index needs to update the userfiles.sessionid field, not the userfiles.userid field, it can figure out
which session record from the IP and userid, but could more easily cache it on the server (after a login) since
a V1 client will maintain a single TCP/IP session.

¢ There should not be a need to change the authentication process for V1, but this needs verification.

¢ Receipt of a V1:Ping should update sessions.pingtime

¢ V1 needs to NOT make changes when the TCP/IP session closes, it needs to rely on either a disconnect, or

the absence of a Ping to know that a session has ended.

Authentication

When a web page or server command e.g. Xxyz.com/aaa/bbb (xyz.com could, but need not be flycode.com) needs
authentication, it checks the cookie "Authenticate_Flycode=jsmith:1a2b3c", there are three possibilities:

1. 1a2b3c=MD35(jsmith : secret) and secret is specific to that service (for example to Flycode servers), in
which case it is anthenticated, check that jsmith has permission (normally either all users have permission -
e.g. to read something or permission is restricted to the owner), and then carry on with the requested action.

2. If the cookie exists but does not match THEN log a possible hack, delete the cookie and treat as for the next
case.

3. Ifthere is no cookie, then Redirect to: http://server.flycode.com:2000/authenticate form?
domain=xyz.com&redirect=http://www.xyz.com/aaa/bbb

1. ‘Where domain refers to a row in the authenticationdomains table (in V2.0 this can be hard-coded as

flycode.com)
2. and http://xyz.com/aaa/bbb is the page we just came from.

For example .....to anthenticate a command htip://www.flycode.com:80/log_transfer?x=a&y=b
Then if it arrives without a cookie, then redirect to:

http://server.flycode.com:2000/authenticate form?
domain=flycode.com&redirect=http://www.flycode.com:80/log_transfer?x%3da%26y%3db

Note that this won't work for redirecting a "POST" (e.g. POST Folder), this needs fixing, short-term
workaround is to make sure that first anthentication is a GET - and Ping is to be used for this,

<COPYRIGHT .../> (after Jun 15}

When the Server sees that a file, specified in POST Folder or in POST Index or several other places, is copyright
or illegal, it should pass this message back to the client as part of the response, (Note that the name can be omitted



US 2002/0049760 Al
74

if not known to the server, for example in a POST Index
<COPYRIGHT/>

<FILE hash="1a2b3¢" name="aaa.jpg" reason="1">
</COPYRIGHT>
The client should display this in a dialogue box prompting for deletion
Server <-> Database Compatability

The table "configuration” will contain two rows.

Apr. 25, 2002

Example ..
Valuename Value Description
[DBVERSION]||1 Version number of database, increment each time a field is added/deleted to ANY
table
SWMINVER |[220 Minimum version number of server that this database is compatable with.
Note that the server version number and minimum version of database are
compiled into the server

The server software will have compiled in "server_version number” and "database_min_version". Note these are
compiled into the server, not in the config.ini file in order to minimize the likelihood of the values being just
copied over during installation.

Whenever the server opens a new connection to the database it should read the DBVERSION and SWMINVER
values and if DBVERSION <= database min version or SWMINVER >= sever_version_number then the server
should print 2 message on the console, and that thread should exit. Note that the server does not need to exit since
it might in the future have access to multiple databases.

This handles the following cases.

Requires change in other component Does not require change
Database |[SWMINVER is increased, Server will connect  [SWMINVER is not changed, server finds
upgrade and find SWMINVER > server_version number [DBVERSION has changed, but its still >=
and disconnects database_min version
Server database min_version increased, server finds database_min_version not changed, server
upgrade ([DBVERSION < database min_version and notices change in server_version_number but its
disconnects still >= SWMINVER.

Client spec: including Windows integration, components and interfaces

Client Modules: What is Where; PPH; ToolBar.

Download Dialog, Launcher, Folder Explorer, Advertising Banner, Search, Local

Folder, Folder XSLT, Properties, Login, Folder Updater, Indexer, Synchronization; Folder Downloader; Systray; Listener; Uploader;

Transfer Manager; Transfer Panel; Authentication;

What is available where

The modules described below are available in different places.

Ping; Login; Registry; Directory Structure; Right Click; Options;




US 2002/0049760 A1l Apr. 25,2002
75

‘Where ‘What
COM module loaded by the . . )
d , PPH; Synchronization; Systray; Transfer Manager; Ping;
Launcher at Startup Indexer, Listener, PPH; Synchronization; Systray; Transfer Manager; Pin:
Not clear - Tom to ToolBar, Download Dialog, Launcher, Folder Explorer, Advertising Banner,
recommmend Status Bar, Local Folder, Folder XSI.T, Properties, Folder Updater,
PPH

This module is used to fetch files, this is called with URLs of the form "ptptp://server.flycode.com:2000/1a2b3c?
name=coolvideo.mpg&dir-My%20Videos%20-%20-jsmith" where:

» server.flycode.com:2000 specifies who to ask for File location information.

» 1a2b3c is the hash of the file

« coolvideo.mpg is the name to use for the file after downloading and is required

o dir is where to put the file relative to the download directory (if absent, use the download directory). Note
that this cannot be an absolute location, but can be anywhere on the disk if and only if there is an appropriate
shortcut in the downloads directory.

It should be implemented as a "Pluggable Protocol Handler", which means that any application that refers to
something via ptptp:something will end up doing the expected thing with the resulting file.

I've been going through the PPH documents, it actually lIooks totally reasonable, the overview.asp is a great
resource and seems to lay out step by step how we get called by LE., except that there are tons of options.

Basically I see the basic structure as this .....

{Abbreviations: PPH or APP is Asynchronous Pluggable Protocol Handler; TM is the Transfer Manager, TP is
Transfer Panel, TH is "Transaction Handler" which is the thing which invoked the PPH - typically IE, HTTPPH is
the HTTP Protocol Handler module fetching from the peer)

o IE instantiates a PPH for each download - this is detailed in overview.asp (all URLs are below).
o Somehow it has to get a pointer to the TM. I don't see how it can do this since it looks like a fresh
IClassFactory is created each time, but I'm not sure I'm understanding this correctly.
o When Start (say with ptptp://server.flycode.com:2000/1a2b3c&name=coolvideo.avi) the PPH should ....
o check the GetBindInfo call for BINDF flags that make sense. Initially it should only implement the
flags actually encountered, and throw an Exception for others, see test cases below.
o check with the Indexer component for 1aZb3c and if found it has to return this.
o Otherwise it looks for FlyTemp/1a2b3c and 1a2b3c.info to restart a download
» la2b3c.info should be maintained during the download to enable as easy a retry as possible,
restarts should work as present. (I can spell this out if you don't have the email on the Transfer
Panel)
n The filename needs to convert \ / and : to something safe - use the same algorithm for this as in
Vi.
o Otherwise it does a HTTP query to http:/server.flycode.com:2000/fileinfo ?hash=1a2b3c&location=1,
and parses the result.
o It takes the result, and iterates through the locations (note this is the non-distributed get version)
o For each location e.g. 12.34.56.78 it creates a HTTP protocol handler (HTTPPH) (presumably the
same interface as this PPH) for http://12.34.56.78:3000/file/1a2b3¢c
» The call needs to set BINDE NOWRITECACHE (via supplying a




US 2002/0049760 A1 Apr. 25, 2002
76

IInternetBindInfo::GetBindInfo interface for the HTTPPH to call back) to avoid double caching.
» It needs to implement a IInternetBindInfo::GetBindString interface, that gets called from the
HTTPPH to get specific info it needs, this call can be passed straight on to the TH except that if
it requests the BINDSTRING URL then it should return the hitp: URL rather than pass the call
on to the TH which would return a ptptp: URL.
o It calls this HT TP protocol handler with "IInternetProtocol::Read"
o As the data is refurned it is:
w put into FlyTemp/1a2b3c
x Remove any illegal characters from this hash [/\)
» The file 1a2b3c.info is updated to show how much has been read.
o The IInternetProtocol::Read calls to the PPH from the TH are responded to from this data.
» Note that there must be decoupling between the PPH->HTTPPH Reads and the TH->PPH reads
so that HTTP retries and eventually distributed get can happen.
o On completion it should
n Check the MDS5 of the downloaded file, if it doesn't match restart the download (this shouldn't
happen)
= move the file to Registry:Downloads/coolvideo.avi
m If a file is downloaded with 2 matching name to one already downloaded, then the name
should be changed automatically, append " 6G" where the 6G is the last two characters of
the hash.
= And notify the index handler. (To be specified)
= And log the transfer by a HTTP query to log_fransfer.
o Note that on failure no action is required, the file can be left in FlyTemp for a possible restart.
¢ There are a number of places where progress reports are needed.
o The PPH should report to the TH on data as specified in overview.asp using
IInternetProtocolSink::ReportData, InternetProtocolSink: :ReportProgress and
IInternetProtocolSink::ReportResult.

= Note - these events must lead to sensible reporting in the status line of IE.
o The ReportProgress and ReportResult queries should also go to the TM in some TBD form which can
use it to update its display when open.
o But .... the PPH should ignore ReportData calls from the HTTPPH as they refer to a percentage of this
particular HTTP read, not a percentage of the file.
o The PPH could just pass on most (or possibly all) ReportProgress calls from the HTTPPH
o

Here are some notes on useful pages and on some of the options .... they might not make sense as they are here, but
it would be useful for you to have printouts for all of the URLs below when we talk so that we can both refer to

them.

¢ overview.asp READ THIS, it has URLs for other commands only some of which are below.
o IInternetProtocolRoot/Start.asp
= IInternetBindInfo/IIntermnetBindInfo.as;
= [mternetBindInfo/GetBindInfo.asp info from the TH to the PPH,

» BINDF.asp its unclear how many of these we need to implement, the overview says
to recognize BINDF_NOQUT and BINDF_SILENTOPERATION, but we work
silently anyway

» BINDINFO.agp - may not need anything, except that it might need to call for
BINDSTRING POST COOKIE

» BINDVERB.asp - which should always be GET
» IInternetBindInfo/GetBindString.asp - callback from PPH to TH, will need to support
some of these calls from HTTP module we pass it on to,



US 2002/0049760 A1l Apr. 25,2002
77

» BINDSTRING.asp - Pass all these on from HTTP to TH except for
BINDSTRING URL which should return the HTTP URL.

= PI FLAGS.asp
o IInternetProtocolinfo/ParseUrl.asp

» PARSFACTION.2
s CANONICALIZE, PATH FROM URL and URL_FROM._PATH: Return the same URL

= FRIENDLY: return the name followed by the description if we know it (from
GetFilelnfo)
= SECURITY URL, SCHEMA, SITE, DOMAIN, LOCATION, SECURITY DOMAIN: I
don't know what these need to do, probably the same as HTTP does.
» ROOTDOCUMENT: Probably http://www.flycode.com would do, I think this is used for
figaring out the BASE?
= DOCUMENT, ANCHOR, ENCODE, DECODE, ESCAPE, UNESCAPE: should all do
the same thing as HTTP does.
» MIME: Should return the value got from GetFllelnfo
= SERVER: Probably "server.flycode.com:2000"
1lntemetProtOCOISmlngportProggess asp
» BINDSTATUS.asp - make lots of sense to report as many of these as we see (except those that
ReportProgress says we shouldnt). Note that overview.asp says that we have to report
BINDSTATUS MIMETYPEAVATLABLE which we can get from the GetFileInfo call.
o Test cases to see what flags / options we have to support.
o Entered on Address line;
o Embedded in <A HREF="ptptp:...>;
o Embedded in <IMG SRC="ptptp:...">;
o Right-click that image, open in New Window
o Right-click save to disk
o From bookmark.
o All of the above when IE is running off-line.
o Reload of any of the above, including the off-line ones.

The PPH needs to be able to receive controlling events from the Transfer Panel.
« Delete - Stop the download, remove the temp files, indicate to caller,
e Pause - Temporarily stop the download, leave the temp files, indicate to caller

o Retry - Depends on the state, it should: stop any currently happening download; if it was paused, try the
same Peer again, otherwise, move on to the next peer if there is one, and rerequest FileInfo if there is not;

continue downloading from the byte-count it got to.

ToolBar

The toolbar sits above the browser window, and is a standard IE toolbar, i.e. it should appear in the IE->View-
>Toolbars menu and behave just as you would expect a toolbar to behave.

It is started by the Launcher.

The technology to use for the ToolBar is to be determined by Tom, it will be whatever integrates easiest as a IE
Toolbar.

Image to come later " |



US 2002/0049760 A1l Apr. 25,2002
78

The toolbar has the following buttons, in left to right order.

Active ||Window

Button ‘When |mnavigated To

Ig)yg:de Always |Main http://valerie.flycode.com/intranet/spec/v2_architecture htm#server_redirecturls

Search Always ||[Explorer |Search

Transfers  lAlways liSeparate ?] Launch Transfer Panel.
Folder

Download (being |[Separate |Download Diglog
viewed
File or

Send2Friend {{Folder ||TBD
selected]

Buddies,

MyProfile,

Recommend, Va1

Report

Infringing

Download Dialog

Launched from the Download button on the Toolbar when a Folder is viewed. Passed the id, name and userid of
the folder.

It should offer a choice of where to download Folders to, defaulting to

[HKEY CURRENT _ USER\Software\Flycode]\Downloads\Funny Videos - Mitra
Also asks I~ Keep Synchronized; if Checked ...
The Download Dialog directs the Folder Downloader to fetch the folder and put the files into the place selected

above. If this place is NOT the default, then a shortcut should be placed in the default location so that the
Synchronization component can walk the tree of downloaded folders.

Launcher

This component ensures that Flycode is running, it needs to be embedable in a Web page, for example as an



US 2002/0049760 A1l Apr. 25,2002
79

ActiveX, or some VB or Javascript code. It also needs to be launchable at startup, or the PPH (No something else -
e.g. TP) could be launched directly instead.

The first task of the launcher is to figure out if Flycode is installed, if it is, then it can selectively launch
components. The parameters that control which components to launch are to be specified when it is clear what
technology to use for the Launcher.

1t needs a parameter "redirect” which specifies a URL to launch on success.

On failure it should always redirect as below:

Systray COM Object.
Folder Explorer
What items are | Toolbar
launched in L} Toolbar - Download |[URL on success 'CRL for downloading
which sitnations. 1 | [ oohar - owR 0aC ! .. means ... means
I Lil ] LIS ronjzati "server.flycode.com:2000"|\"server.flycode.com:2000"
% g } ; | [Advertising]
Sitnation VAW \:, \ll :
‘Web page generated by . 5 hitp://.../download?
http://.../file? viviyiNly [y pUptpal [1a2b] redirect="ptptp://.../1a2b?
hash=1a2b&name=aaa.avi ’ name%3daaa.avi"
(Web page including a .
tptp link NHNIN|IN N N none http://.../download
hitp://.../download?
From Folder XSLT YIYRYY Y Y edirect="http://.../folder?
id=123"
N/A (it couldn't be
When called at startup  [[YNININ]'Y N None aunched at startup it
already).
Explorer Bar

This is displayed in the standard explorer bar location, subject to usuat IE behavior (e.g. appearing in IB->View-
>ExplorerBar)

It can be launched by the Launcher.

It needs to show a hierarchical table of folders, see Directory Structure for how and where this maps to the disk.

On Cliek Main window to .... Notes
Flycode Typically C:/Flycode/jsmith



US 2002/0049760 A1l Apr. 25,2002
80

[- 1 Downloads Registry:Downloads

Note that this refreshes the list if

o hioh ] PV
[~ ] Funny Movies - bigbig http://.../collection?id=123 we are online.

[ ]Users
[ I bigbig hitp:/..../user_folders7user=bigbig
[ | Funny Movies http://.../collection?id=123
L} Searches
[ ]Funny C:/Flycode/jsmith/Searches/Funny.xml
E]E?g“ﬁg Movies- 4. Jcollection?id=123
[~ ]My Folders C:/Flycode/jsmith/Fileclubs

[ |HomeSweetHome C:/Flycode/jsmith/FileClubs/HomeSweetHome
The technology is probably a HTML page with an embedded OCX, but is to be determined by Tom

Adpvertising Banner (after Jun 15)

This is displayed in between the main panel and the status line. I'm not sure if there is standard IE behavior that
this should match..

It can be launched by the Launcher.

It should be HTML, behavior to be determined later. |

Search Panel

» Ifpossible this hooks into the standard Windows Search Pane, so that Flycode is one of the things you get to
search. (It seems to be different in Win98, maybe can't hook into all Win9¥)

o Tom says: Explorer "band objects" can implement a search handler (or other custom panels) that plug
into the lefi-hand side {and bottom) of File Explorer. We should be able to derive from default search
band and customize.

¢ The Search panel is an HTML form. (Unless this is precluded by the requirements to hook into Windows
Search Panel)

o Itis generated by http:/server.flycode.com:2000/search_form
o It has fields for the different Search Options: Adult / Undeclared / Family Safe, Video, Image, Folder,
Online

o These options should be initialized from the Registry (or as a cookie if that is difficult). Before

submitting the form it should set these options back in the Registry to initialize the page next time.
There should be a field to enter the search query.
V2.1 could add other fields such as Size,
History of search is provided via the Windows Search Panel ?
The search navigates the main window to http://server.flycode.com:2000/search?<same arguments as
V1:Search >~ | except

o online=1 specifies to just search files which are online



US 2002/0049760 A1 Apr. 25, 2002
81

Local Folder

The local Folder viewer refers to the extensions to the Windows Shell to display our own LOCAL folders.

e This hooks into Windows through two basic mechanisms.
o When a local shared folder is opened, it uses Windows Folder Extensions to open a certain view of the

club along with appropriate toolbars.
o As files are dragged and dropped into the Folder, or deleted from it, the events are trapped and acted

on as below.
o How exactly this works is for Tom to specify~]
¢ The initial hook is created by creating a folder at installation - Registry:FileClubs, this is marked as a

Flycode folder so that it uses the extensions.
o The Folder must be able to switch between Web and Columns views just as for Windows Folders. The Web

View should be the same as a user will see -~ i.e. using the XML & XSLT file.
There are a series of other points where it ties into windows. The details have to come from Tom.

For each of the items that can be listed there will need to be hooks to show the correct Flycode Icon instead of the
Windows default.

On Click
Item Icon||Display in List (See Function:Right Click for right click
options.

Use Properties and/or Meta-data from
— jjindex.xml, if meta-data indicates needs 2 | Standard Windows Launch (see DRM diagram
Local File H license, then use DRM functions to check if |{for how this can end up somewhere else

need license Can show thumbnails via entirely).

windows standard mechanisms.

Local Folder [[ 7] Show Collection icon, use Meta-data from ||Open that folder in Local Collection Viewer
oc T that collection's index.xml to show size (standard windows open)

Remote file E! Not possible N/A

Remote . . .

Pl | [ Clleion o, sl (6om, oo apn ot e UL

(stored as a . . ,—EL———— http://server.flycode.com:2000/folder?id=123

this folder) show collection's size.
(shortcut)
Editing

When a file is dragged into the Folder, the action depends on what is being moved, and whether the user chooses
Copy (or Move) or Create Shortcut, in all cases:

« if it is adding a File, the client should check that the File is of a supported type, by checking the regisiry for a
mime type of image/* or video/* and if not should give an error message. If this is a add of multiple files
then there should only be ONE error message.

¢ After successful copy or shortcut creation, of a single file, the client should pop up the Properties dialog box.
This should be initialized from the properties of the File or Shortcut being copied.

« After successful copy or move or shortcut creation of multiple files, then do not pop up the Properties dialog




US 2002/0049760 Al

box

82

Apr. 25, 2002

« Creating a New Folder is just creating a Windows Folder, setting it to use the extensions, and opening the
Properties dialog to collect the Meta-data.

Table of behavior on Dragging, or Cutting and Pasting something info a L.ocal Folder.

Create Shortcut or copy an existing Windows or

What Copy or Move Internet shorteut
Local Fil Copy or Move the File to the (|Create a Windows shortcut, No difference in how a
ocaltiie directory Shortcut or the original file is sent to the server.
Copy or Move the Folder and
its contents to the directory, . . .
Iocal Folder ake nommal windows Create a Windows shortcut, No difference in how a

precautions to prevent
recursion etc.

Shortcut or the original file is sent to the server

Remote File (e.g. dragging
out of a Remote Folder or a

Fetch file if required, then
Copy or Move the File to the

Create an Internet shortcut to
piptp://server.fiycode.com:2000/1a2b3c?

Downloaded Folder or the directo: name=coolvideo.avi
Downloads Folder) 1y )
Remote Folder or .
; . %id=
Downloaded Folder Create an Internet shorteut to http://server.flycode.com:2000/folder?id=123

Technology: Tom says: Have code examples for catching events on both right and left click drag-n-drop. See

COleDataObject.

Need: Link to DRM and encryption for publishing =

Folder XSLT

The XSLT is crucial to how this works, it has to generate the Folder listing, its possible that it will require other
functionality - e.g. CSS to make it work properly.

The functionality of this file is described throughout this document, but some extra points are: (gather notes from

rest of doc here

e Whenever a userid is displayed - e.g. the owner of a Folder, it should be a link.
o Ifthe display is similar to V1, i.e. that all columns for the file have to be one link, then this can be a
right-click item. "Display User's Folders”
o The link goes to hitp://server.flycode.com:2000/user_folders?userid=jsmith
» There needs to be code in this that will ensure that the Flycode components are present, and then direct the
PPH to get the file for example it might contain an <OBJECT tag> that contained as an ActiveX
component,the Launcher; which will ensure toolbars etc. are open. There might be an even simpler way of
doing this by loading a 0-pixel image from "ptptp:" and then redirecting as for the launcher depending on
whether this succeeds? (Check with Tom)
o Note that the Folder XSLT does NOT include the Toolbar or Explorer or Advertising Banner, which are
launched by the Launcher as specified above.
¢ The middle panel should be set up to do previews, and hold meta data. Including Description, Size, Esc, and
Comments - the comments will require a separate query to hitp://server.flycode.com:2000/fileinfo?
hash=1a2b&comments=1. How to exactly to drive this middle panel is something to be figured out during




US 2002/0049760 A1l Apr. 25,2002
33

development and separate server queries may be required here. For example, it might be that this panel
needs HTML generating, or XML/XSLT or something like that.
e Right Click menus will be added to all items

[tem Display in List On Click (see also Function:Right Click)
Local File or,
Local Folder| V* A

Use Meta-data from index.xml, call Indexer
to see if have file, if licence=1, indicating
needs a license, then use DRM functions to
check if need license, icon and link depend
on these two questions.

[Have File [[Licence Tcon
Yes srigg;ed’ not need icons [[http:/server.flycode.com:2000/conditions?id=1a2b
Remote Fil Required, not . http://server.ﬂycode.com:2000/conditions?
emote e No present need icons id=1a2b&nofile=1

Yes Igequired, present  lineed icons ||piptp://server.flycode.com:2000/1a2b&name=aaa.avi
No Required, present  [ineed icons |[ptptp://server.flycode.com:2000/1a2b&name=aaa.avi
Yes [Not Required need icons [{ptptp://server.flycode.com:2000/1a2b&name=aaa.avi
No [Not Required ][need icons |[ptptp://server.flycode.com:2000/1a2b&name=aaa.avi

If showing thumbnails show
http://server.flycode.com:2000/thumbnail?

id=1a2b :
Remote Show Collection icon,L'—_} use Meta-data to  {{Standard IE open of the URL -
Folder show size http://server.flycode.com:2000/folder?id=123

Properties

The Properties dialog pops up when either: A file is published (e.g. by dragging into a Local Folder), or a Folder or
File is Right-Clicked

If the Properties are for a Remote Folder or a File in a Remote Folder, then the Properties dialog is Read-Only.
The Property Dialog should ask for information for:

» For a File, these properties are: editable (Name, Description, Keywords, Adult) or not editable (Owner, Size,
Type).

» For a Folder, these properties are editable (Name, Description, Keywords, Adult, Public/Private, Adult) or
not editable (Owner, Size).

The information stored can be stored in some kind of Windows specific storage if there is a normal place to store
it. (Tom to specify). Whether or not such a place exists, the information should also be stored in an XML file
index.xml in the Folder. This file follows the format of the V1 file, except that the top level should be
<COLLECTION> rather than <COLLECTIONS> since there can only be one.



US 2002/0049760 A1l Apr. 25,2002
84

Note that the mime type MUST come from the Registry, V1 has a bug where myvideo.mpg will be
mimetype=video/mpg instead of the correct video/mpeg.

The change in the Folder should be uploaded using POST Folder

If the Post Folder return code is 200 with a <THUMBNAILREQUEST>.. </THUMBNAILREQUEST> response,
then for each <FILE> mentioned, it should be passed to a Thumbnail generator (a component to be sourced from a
third party). The JPEG returned should be uploaded to the server with POST Thumbnai].

Where other extended information is available, such as the Codec information Esc then Flycode should not
interfere with them being visible.

Technology: Tom says: CPropertyPage - have code example.

It may be appropriate to code part of this functionality as a separate module - or as part of the FolderUpdater if it is
necessary for the Properties dialog to meet certain Windows criteria (Tom's input required).

Folder Updater

This Module is responsible for keeping folders on the server in synchronization with Folders on the client. See
Function: Folder Data Flow for how it integrates.

Tt is run whenever the client goes Online - as signalled by the Ping module, because Folders could have changed
while the Client was off-line

The client reads http://valerie.flycode.com/intranet/spec/v2_architecture him#server_folder hashes which gives a
list of the Server's idea of the hash for each Folder.

The client walks the tree of Folders starting at Registry:FileClubs, and following any shortcuts, comparing the hash
from "folder_hashes" with that in each folder's index file. This is the same directory walk as for the Indexer, and
the Folder Updater can do this itself or request the hierarchy from the Indexer.

If there is no index file, then the Folder Updater should generate one from the information available from
Windows about the file, and any Properties stored on it.

For any case where the hash doesn't match, or the Folder isn't listed then it can do a "POST Folder",
Note that it has to handle requests for thumbnails in the response (see Client:Properties)

Note that each "POST Folder" can be done by separate threads, running in parallel or it can be one thread that
walks through and does them all.

Hash algorithm for collections (same as V1)

The collection hash is the XOR of the MD35 of the concatenation of the values from the fields sent with each file in
a Collection. So algorithmically

¢ Start with a hash of all O bits
e For each item
o extract the fields hash, type,adult,description,creator,file_size,filename



US 2002/0049760 A1l Apr. 25,2002
85

o Concatenate these fields and do an MDS5 on them.
o XOR with the hash being generated.

Note that for an incremental operation consisting only of adding files, the new hash can be found by only taking
the new elements and XORing into the oldhash.

Indexer

This keeps the Indexes on the server up to date. It is part of the Systray COM object.

There are three uses for this module:

¢ checking whether there is a local copy of a file,
« and incremental and full , both cases use the "POST index?oldhash=1a2b&hash=3c4d" command.
» caching the folder hierarchy - and making it available to other places such as the Add File dialog and Folder

Updater.

The first time the application goes online after being launched then it will send oldhash=""to signify a full upload.
Otherwise it will send the hash sent with the last POST.

The new hash is calculated by XORing the hash of each of the files with the oldhash. (If no oldhash is remembered
then start with all A'sie. "AAA...AAA"

If this is a full update, then the client walks the tree of Folders starting at Registry:FileClubs, and following any
shortcuts. It builds an internal table of hash to location, that can be used for responding to GetFile's. (Note: Same
directory walk as for the Folder Updater). The client can send each directory as a separate POST Index, BUT it
should only send files not in its internal table, i.¢. if the same file appears in several directories it will only be sent
in one post.

If this is an incremental update of a single file (for example after a file is added to a FileClub), then the module
checks if the file is already in the internal table, and if not sends a single POST index with the new file. If the client

is offline then it should remember the changes and attempt to send when signalled by the Ping module that it is
online.

If it is adding a directory to the index, then the module can just read that directory and send it in a POST index, it
must check and only send files not already in the internal table.

This module needs an interface that allows the Uploader module and others to query for the location of a file by its
hash.

The Indexer needs to log requests for files via a HTTP query to log_view
Synchronization

The Synchronization module should be run by the Launcher - it could also be run periodically - possibly under
control of an Options field (Frequency to update Folders).

It walks the Folders under Downloads, checking their "Synchronize” property. If set (this is only set at the client),
then it should direct the Folder Downloader to re-fetch the folder.



US 2002/0049760 A1l Apr. 25,2002
86

Folder Downloader

This downloads a Folder, given an id. It is a one-time action. It is driven by the Synchronization Module, and by
the Download Dialog.

By default, it downloads Folders to Registry:Downloads/Funny Videos - fred

For a folder with id=123 it fetches http://server.flycode.com:2000/folder?id=123 &hash=1a2b3c, where the hash is
the last recorded hash from a previous call, and is got from the index.xm1 inside the Folder. A return code of 204
means that there is no change to the collection, so no downloading is required - this is used when synchronizing
folders.

It should iterate through the folder fetching each file that it doesn't already have, through the PPH interface. For
example, it can pass the PPH a URL of the form ptptp://server.flycode.com:2000/1a2b?
name=coolvideo.avi&dir=Funmy%20Videos%20-%20fred

_If a different location is specified, then a symbolic link is required before downloading, for example if the user
specifies D:/Funny then a link would be created at "Registry:Downloads/Funny Videos - fred” "D:/Funny” and the
URL passed to the PPH is exactly the same.

Systray

The Systray component is part of the Systray COM Object which is launched by the Launcher, and is used to
launch other pages.

This should have the following options:

o Transfers - this opens the Transfer Panel.

« Downloads - should open Registry:Downloads in a new window

e My Clubs - should open Registry:FileClubs in a new windows

e Search - Opens Search Panel in new window

» Home - Opens http://valerie.flycode.com/intranet/spec/v2_architecture htm#server_redirecturls in a new
window

o Exit - exits Flycode, it will be restarted by the Launcher if it is used.

Ul issue: At this time I do NOT think we need a Connect / Disconnect option, this is because for receiving there is
no concept of connecting, and we do not want to give the user an option to disconnect and NOT share, i.e. to get
the benefits of Flycode without participating.

Note that several of these functions duplicate functions in the Flycode Toolbar, but I think this is worthwhile since
they are available even when the user does not have an active Flycode window open

Listener

The Listener is a module that is part of the Systray COM module launched by the Launcher at startup.

It does a TCP/IP accept on a port specified in the registry.

When a command is received, the Listener parses the HTTP command and looks it up in a table of handlers. It



US 2002/0049760 A1l Apr. 25,2002
87

should use some standard (e.g. something from Wininet) HTTP handler for this.

At this time, that table can be fixed, in the future there might be a registration process. Note that it must be possible
to route GET and POST to different handlers.

Command Handlerl
GET file |Uploader]

‘When the handler is found, the Listener should pass on the HTTP connection to the handler, this should use as
standard a Windows mechanism as possible - for example something like a ProtocolSink? Tom to specify this.

Uploader

An instance of the Uploader is created by the Listener for each incoming GET file command, receiving a HTTP
structure to be specified by Tom

The URL will be of the form /file?hash=1a2b3¢c

The Uploader should query the Indexer to figure out where this file is located, and then should retumn the requested
portion of the file via the HTTP connection.

If there is no matching file then it should return a 404 error code. This should not be a common occurrence.
The Uploader should notify the Transfer Manager via the same methods as the PPH uses.
_There is no need to record state information since any retries are initiated from the requesting side.

There should be a limit on concurrent uploads (a Registry entry) and if this is exceeded then a 404 should be
returned.

Transfer Manager

The Transfer manager works in cooperation with the Transfer Panel, they are separate because the Transfer Panel
has a Ul which is often not visible, while the Transfer Manager needs to run all the time.

See the Transfer Panel for details of how these two modules interact.

It is part of the Systray COM Object , when launched it will:

Check in the FlyTemp directory for incomplete downloads (1a2b3c.info files), since this module has to be running
before the PPH is running it can safely assume that these are failed downloads - even if not marked as failed.

o If the registry entry Flycode/TransferSave = 0; delete all failed downloads - both 1a2b3c and 1a3b3c.info
o If Flycode/TransferSave = 1; It should restart all these downloads, calling PPH but without reading the data.
The PPH will store the file in the Downloads directory, and communicate with the Transfer Panel.

Periodically (every 5 minutes) this module should run and check for failed downloads and attempt to restart them.
How to recognize that a download has failed is to be researched, but probably it would work that if this module is



US 2002/0049760 A1l Apr. 25,2002
38

already running (i.e. this is a periodic check, not a first-time check) then a 1a2b3c.info file will be correctly
identified as "Failed".

There is functionality that is controlled by the Transfer Panel - for example Pausing or Retrying downloads, this
could be either functionality of the Trapsfer Panel or of this Module.

Transfer Panel
This is opened by the Systray -> Transfers;

It receives events from the PPH instances as they download files. It also receives events from the Uploader . It
works in cooperation with the Transfer Manager, which is part of the Systray COM Object and therefore running
all the time. Some functionality could equally well be in this module or in the Transfer Manager, in general
functionality that only happens when triggered by a Ul interaction should be in this module.

When it is started, it contacts the Transfer Manager, the Transfer Manager then attaches it to all running PPH's, and
the Uploader, for receiving events. When a PPH is created then the Transfer Manager is involved (for example it
might be part of the class factory?) and can attach the Transfer Panel to it. When this module terminates it needs to
inform all PPH's it is attached to so that it no longer receives events. (If it is easier, then it would also be possible
for events to go to the Transfer Manager and then either be discarded or forwarded to the Transfer Panel.

The Transfer Panel should have the same functionality as now, specifically:

o When a download is initiated - by starting a PPH item, then an item should be added here, but this panel
should not open nnless clicked on in the Systray.
» When this module is started it should list all running PPH or Uploaders.
e Buttons in transfer panel
o Delete should should delete an entry, and signal the PPH which should stop the download and remove
the temp file.
o Pause should mark as paused, and signal the PPH which should pause the download, and leave the
file.
o Clear Done should remove all completed downloads from the list,
o Retry, should always get a file transfer going again, by whatever method is needed.
s If an entry is paused, then mark as moving again and signal the PPH to continue the download.
s If an entry is failed, then mark as moving again, and signal the PPH, or start a new PPH to
continue the download.
» If an entry is working, then signal the PPH to stop the download and try again.
= Clear Uploads should only clear completed ones, and not effect in-process ones.
= Ifthe PC goes off-line, or is suspended, all downloads should be paused, when the PC is
resumed, or goes back online (as signalled by Ping module) then all paused downloads should
be restarted. (Maybe this should happen in the Transfer Manager)

Authentication

A number of commands are authenticated - see list - any module that uses these should be prepared to receive a
redirection to a screen for entering login information. Commands will eventually be redirected back to the result.

Ping

The Ping module is responsible for informing the server that the client is still online



US 2002/0049760 A1l Apr. 25,2002
89

‘When started, and periodically (every 5 minutes) it should atterupt to read (via a HTTP component)
http://server.flycode.com:2000/ping (note this is lower case "ping”, compared to "Ping" for V1).

If the Ping is unsuccessful then the client should be marked off-line, and the Ping module should keep trying, and
the modules should be signalled.

If the Ping is successful then the client should be marked Online, and the modules signalled.

o The Folder Updater which will upload any changed collections - since the Folder Updater doesn't run
continuously this means running it when you go online, and setting some variable, or having some interface
accessable to the Folder Updater that it can check when it is run to see if it is online.

» The Indexer which will save pending changes when offline, and send any pending changes when it goes
back online. So this should be signalled.

¢ Loggers of various types (to be written)

o Transfer Panel - or Transfer Manager - which pauses restarts when the client goes offline, and restarts any
paused or failed downloads when it goes back online.

The first time it is called, and periodically (every 60 minutes) it should request
http://valerie.flycode.com/intranet/spec/v2_architecture.htm##server_software version. This should return a
<SOFTWAREVERSION>. The client should check the serial number in the Registry, against the
SOFTWAREVERSION parameters

o if the Registry <required then a dialog is presented, to the user offering a chance to download a new version

or exit
o If the required <= Registry < available: then a dialog offers the opportunity to download or continue.

If the user chooses to Download then the client should run Active Install with 2 flag to indicate it is being run for
an upgrade, and the client should exit.

Login
There is no "Login" module or functionality, it is handled by different modules.

» Telling the server where a client is, and what files it has is handled by the Indexer.
Letting the server know that a client is still alive is handled by Ping.

Checking the current software version is handled by Ping.

Checking for <MESSAGES> from Send2Friend is not specified yet.

Uploading information about Collections is handled by the Folder Updater

Registry

There is clearly a design issue here, the question is whether we have a one-to-one correspondance between Flycode
users and Windows users. If we think there is, then we put shared Registry entries in

HKEY_LOCAL_ MACHINE/Flycode and per-user entries in HKEY CURRENT USER, but if we think that
Flycode users may use a single login, and then setup multiple Flycode users underneath that, then we need to keep
something like the current structure.

The assumption is, that if they are sophisticated enough to setup seperate Flycode users then they can do it by
having separate Windows logins, and so we can do this split.



US 2002/0049760 A1

Apr. 25, 2002

90
The registry is organized as:
- 'Write
Default Value (unless spec.
Pathj Key Read Meaning
%:\Eeanz 'written at
| \Flycode) installation)
Settings related to
KEY_CLASSES ROOT intercepting protocols,
types etc.
, Jl ]| Tom to document.
r .
HKEY CURRENT USER\Software\Flycode A setiings persanal to
_ - S user
l};____er,F%vlgdp__:rer Root for storing
Downloads GAmitra\Downloads |22 50— = downloads and
Downloader,
downloaded clubs
Systray
Sysiray; Folder . .
FileClubs ... xmitra\FileClubs Updater; 1;;;))t£<$)sstonng users
Indexer;
Root for temporary files,
FlyTemp .-\mitra\FlyTemp %Piaﬁﬁ;Terransfer note this must be on the
hanager same drive as Downloads
Explorer Bar,
[Users ...\mitra\Users ight-Click/Add For the hotlist
to Hotlist.
Searches ...\mitra\Searches Explorer Bar, For the result of searches
Search
Transfer . Save transfers and restart
TransferSave 1 Manager Options when possible
SearchAdult 2 'Value from last search
SearchVideo 1 'Value from last search
Searchlmage 1 Search 'Value from last search
SearchFolder 1 [Value from last search
SearchOnline Il Value from last search
.. Limit on number of
UploadLimit > Uploader simultaneous uploads
1 means move, 0 means
AddFileClubMovelj0 copy 2 means create
Right-Click Add FileClub | oot
-Cli¢] ileChl
Club to offer first,
AddFileClubClub ("" defaults to
Registry:Fileclubs
" Settings common to all




US 2002/0049760 A1l Apr. 25,2002

91
HKEY LOCAL_MACHINE\Software\Flycode users of Fiycode on this
= - machine
C:\Program 'Where the application is
AppPath Files\Flycode ? installed
[Version ? About Current build number
. . ‘Where we listen for
ListenerPort 3301 Listener incoming requests

Questions:

e Do we need a HKEY LOCAL_MACHINE\Software\Flycode\Default that is used to load the initial settings
for a new user?

Directory Structure

The client directory structure is intended to be simple and easy to work with. There is an important distinction
between the logical structure of Flycode as presented in the Explorer Bar and the physical structure on disk, below
is the default structure, but various parts can be moved either by changing the registry keys or by using shoricuts,
normally this would be done to allow large Folders or Files to be one other parts of the disk than C:, or to save
having two copies of something. ftalicised entries are examples, replaced by the user id, or club name etc.

C:/Flycode root of flycode hierarchy,
jsmith directory for a particular user
Downloads where downloads for that user are stored.

[HKEY CURRENT_USER\Software\Flvcode\Downloads]

Fun Videos - Mitra a club downloaded from Mitra
Big Videos - Jane a shortcut to a downloaded club from Jane somewhere else on disk.

FileClubs where the user's own fileclubs are stored.
[HKEY CURRENT USER\Software\Flycode\FileChibs]
India A specific club

elephant.mpg A file in the club
bigvideo.avi A shortcut to a video stored elsewhere on the disk.

Huge Club A shortcut to a FileClub stored elsewhere on disk
FlyTemp the temporary area used for downloads, this MUST be on the same drive as
Download - [HKEY CURRENT USER\Software\Flycade\FlyTemp]
Users area for storing a list of specific users
[HKEY CURRENT USER\Software\Flycode\Users]
Mitra internet shortcut to http://server.flycode.com:2000/user_folders?userid=mitra
Searches Area for storing results of searches
[EKEY_CURRENT USER\Software\Flycode\Searches]
Junny.xmi Results of a search for "funny"

C:/Program Files/Flycode where the application is stored
[HKEY TOCATL, MACHINE\Software\Flycode\AppPath]

Right-Click



US 2002/0049760 A1l Apr. 25,2002
92

If possible a Right-Click menu will be present on ali links in a Folder. This will contain.

File File in User
Folder| inside Windows/LE inside |Text Does
Flycode | Flycode
Find
% Folders  ((Navigate to
containing {hitp:/server.flycode.com/folders_containing?hash=1a2b
this image
Open a dialog with a nested list of Flycode folders shared
on this machine, when a Folder is selected acts as if file
* Add to was dragged into that Folder. This could also be a
Flycode  |lcascading list attached to the right-click memu. If its a
dialog box it should give a choice of Copy/Move and
also remember the last Fileclub chosen.
Download .
* o
Folder Download Dialo
* * Properties Opens Properties dialog with Flycode extensions. (Read
only if Remote Folder or File in Remote Folder)
« [[Addto Adds the user to the Hotlist folder as an IE shortcut - see
Hotlist Directory Structure.
% View Navigate to http://server.flycode.com/user folders?
User's Filesiluserid=jsmith (see Client:Folders XSLT)

Technology: Tom says can add arbitrary properties to the right-click context menn (like Winzip) - have code
example

Options
{only options for parts of code implemented are required by 20th May)

Many parts of Flycode could potentially be configurable.

The goal of options is to allow the more advanced users to have some control over the application, while protecting
beginning and intermediate users. This will eventually be done by having a main pane] which bas a course level of
comntrol - e.g. setting defaults based on bandwidth, and then other panels with more fine control. For now its a

single panel.
This should be a "Options" button on the Toolbar, or menu. (Tom to figure out exactly where it goes)
The button should open either an HTML form, or a dialogue.

¢ This box should be multi-tabbed. The left-most, default tab labelled "General" contains items to set defaults
based on line speed. it would have items on it which said:
o ¥ Start Flycode with Windows
o Size of cache - no more than {160 | <initially set to 10% of disk space vailable> (Above this size
and the Transfer Manager should start emptying the cache)




US 2002/0049760 A1l Apr. 25,2002

93

o I Save Transfers - should set FlyCode/TransferSaves = 1 or 0

A review should be made of the client code to determine if there is anyting else that it makes sense to configure.

This should set Registry entries as it does in V1.

Open issues

Not in V2.0 ~ Questions for Tom - Compatibility issues - Email Notes

Notin V2.0

This list is items mentioned in the Product Description, but that I don't think should be in V2.0, better V2.1, these
are suggested because the feature is relatively unimportant AND is complex to implement.

Everything under Publisher/V2.0/Subscriptions except basic pay a fee to get access to content for that
Publisher/V2.0/Publishing/Background fingerprinting

User/V2.0/Searching/Number of copies available

User/V2.0/Folder/Graphic display of License information e.g. bar showing days till expiration
User/V2.0/Transfers/Advertising in Transfer window

User/V2.0/Transfers/Start playing in WMP immediately on downloading.

User/V2.0/Transfers/Tallies - I'm not sure what is meant by this.

User/V2.0/Community - everything

User/V2.0/Viewing:Printing and Wallpaper

Tallies for uploads/downloads: For each local file on your disk, metadata showing 1.) The number of times
the file has been uploaded from you. 2.) The number of times the file has been downloaded in the entire
Flycode network. Indicates popularity of files.

Storyboard/Start/Customized start page

Storyboards/User Profile

Storyboards/Threaded Discussions

Storyboards/Search History

Storyboards/Recommend

Storyboards/View/Blacklist

Storyboards/User Hotlist - as a separate panel, just show in the Explorer bar.

Questions for Tom

I need to know if when a .mbox file is launched, and goes to the MLM, then will it then go automatically to
WMP or will we see a MLM window
Can we grab Windows failures to launch, so that we can use them to look for a suitable player

Compatibility Issues

We will assume IE 5.0 or higher
We should work with TE6.0 betas
‘We need to run under: Win98 2nd edition, Win2K, WinME, and as it becomes available Win XP.



US 2002/0049760 A1l Apr. 25,2002
94

Notes from Email

These are some collected notes from email that might be useful, they do NOT constitute part of the specification, if
they conflict with anything else in this document then discount what is said here, or check with Mitra,

e Tom: 28 Mar
o Can add custom columns in File Explorer - have code example
o Can customize icons file-by-file, for local, remote, DRM'ed, etc. Have code example.
o Hook handler for moving/copying/deleting/renaming folders - have code example.

Useful references

e XML, XSL and XSLT
o Displaying XMI, in Intemet Explorer shows basics and how to refer to a XSL from a XML
o Unofficial MSXMTL XSLT FAQ useful reference, especially if things don't work as expected.
o What is XSLT - extracts from a book, more comprehensive, but longer
o Transforming XMI. - a Folder of documents on doing XSLT
o Pluggable Protocol Handlers
o Asynchronous Pluggable Protocols Overview
o Or search for arficles on MSDN
¢ Extending Windows
o Shell Extensions from MSDN
o Other programs to look at for examples:
o Interpet Neighborhood. - Custom Shell supporting drag and drop for remote and local files.
Thumbnails

o Alfa Vista Image Search
o Microsoft's Thumbnail control




US 2002/0049760 A1l Apr. 25,2002
95 O

APPENDIX D

Flycode
Database Specification



US 2002/0049760 A1l Apr. 25,2002
96

Flycode
Database Specification

(Company Confidential)

Last updated: 28 May, 2001 by Mitra
© Copyright Flycode Ltd., January 2000

Last checked for correctness: 1st May 2001 by Mitra

This docnments the V1 Server operating, it needs the database_delta
; spec integrating when that goes live. And also changes in the
. v2_architecture spec. There are also proposed changes in v2_after and
mediatypes and private label.

Purpose Specification Index

The purpose of this document is to provide a design specification for the Entity Diagram

database structure as implemented in the Flycode server. The database , .

. L. . . . Tables described elsewhere in
specification is intended to mostly independent of the Client->Server protocol iy .qulea development.
and totally independent of the user-interface, however certain compromises may

be made for efficiency. o In Process
o betarequests
Technical Control ? LEdues
0 viewlog
This design and the control of the software specifications are being managed by: © l@_ﬂlg&lpg
Mitra, Flycode Chief Technology Officer. <mitra@earth.path net> O raings
o layout
All questions relating to this specification document should go to him. o layoutparams
O sessions
Technical Control o copyrights
0 gronp
'This design and the control of the software specifications are being managed by: 0 members
Mitra, Flycode Chief Technology Officer. <mitra@earth.path net> o requests
e Private Label
All questions relating to this specification document should go to him, o network

Technical Control

This design and the control of the software specifications are being managed by:

Mitra, Flycode Chief Technology Officer. <mitra@earth.path.net>

All questions relating to this specification document should go to him.

¢ Preview Integration
o offerfiles
o offers
C owners
C conditions
© receiptsplit
O optinemail
optinusage
optinmessages



US 2002/0049760 Al
97

Technical Control

This design and the control of the software specifications are being managed by:
Mitra, Flycode Chief Technology Officer. <mitra@earth.path.uet>

All questions relating to this specification document should go to him.

Overview
' The tables of the Flycode database can be considered to occur in three groups.

1. Application Tables: providing the functionality of Flycode

2. Log Tables: These accumulate information about what has happened, they
can be truncated without damage to the application, although of course
this should be done AFTER the information is analyzed.

3. Statistical tables: these will be used to monitor the use and growth of
Flycode. This set of tables might well change a fair bit as we gain
experience with the product. Generally these tables will need a various
cron type tasks defined so as to populate them. This functionality is not
critical to the Alpha development of the product, but needs to be there for
launch.

It is critical that anything using these tables should asswme that they might
change in the future, in particular all code that relates to maximum size of strings
should be configured from header files so that the string lengths can afterwards
be changed in only a few places (e.g. Database creation routine where?, Server:
DBClasses.DBConstant and Client C++ config file where?)

Application Tables

Abbreviations

Apr. 25, 2002

o gopyrightaceept
o Mime Types

o errothandling

o genericerrorlog

Contents:

s Nondisclosure

Copyright and Intellectual
Property
Technical Control
Purpose
Qverview
Application Tables

o0 Abbreviations
configuration
users
emailaddresses
userfiles
files
comments
collections
clerments
messages
messageemail
messagelist
feedback
language
viralemail
livesubscriptions

C 0O 0 0 0000000000000

0 exedata
e Log Tables
o transferlog
o transferfailurelog
o searchlog
e Statistical Tables

o logonsession
0 numberofdownloads

O counters
e Consistency Checks

Abbreviationl Means Comment

uint ]Unsigned Integer ({10 bytes

7. L3



US 2002/0049760 A1l Apr. 25,2002

98
datetime Bignt20 [Holds a Unix timestamp
'USERID CHAR40 I Long enough for a Flycode userid:
EMAIL CHAR40 Long enough for any reasonable légal email address
HASH CHAR22 [Holds a Base64 encoded MDS5 value
IPPORT llcHARS TP number and port expressed in hex
FILENAME ||CHAR255 [[File name w

The following database tables will be used in the design.

configuration

This is a table used to contain various configuration values used by the software. It has four columns:
!

Column |Datatype Description/Comments

rowid wint aptoincrement 3
valuename | CHAR2S5 JUNIQUE|the name of the value in this row
value CHARS0 the value associated with the valuename
description| CHARG64 the description of the valuename |

'

Specific Rows that are needed in this table should be documented here. Please email mitra if you add any rows to
this table.

Valuename Example Value H { __ Description

DBVERSIONII 'Version number of database, increment each time a field is
added/deleted to ANY table
SWMINVER [220 Minimum version number of server that this database is compatible

with. Note that the servexf' version number and minimum version of
database are compiled intb the server, as to put them here would defeat
the point of making sure they server code and database are

commutable.
AVLCLVER (430 ||Currently available versidn of client
MINCLVER [|410 |IMinimum version of the ¢lient required to work with the Server.
SETUPURL l[http://..../flycodesetup.exellURL for new version of active install
SETUPVER |7 [Active Install Version

size 181 bytes per entry
users

This table contains the list of Flycode registered users. An entry is made in this table when a new user registers to
use Flycode. On subsequent logins and logoffs the online column aqd location columms are updated. A process
needs to run from time to time to update the table for disconnected users who did not logoff.

f

See Modification Scheduled in InProcess: LastSeen

file://CAWINDOWS\DESKTOP\ApplP001\Disclosure%2 0Docs\D a%tabase%20—%20F1yc0de%205peciﬁl.. . 6/14/01



US 2002/0049760 Al Apr. 25, 2002
99
Column Datatype |Description/Comments
rowid uint autoincrement
userid USERID (user's login id
password HASH Hashed password: The value MDS5( userid ' realm ' password) ; note that this is

the same information as generated by /usr/sbin/htdigest as supplied with Apache.

connection_speed |CHARIO |from initial registration

online ujnt 1 if on-line, 0 otherwise

time_created datetime [Unix timestamp when they registered

location IPPORT |IP Number and port expressed in hex

authenticate CHARI150]Cached Authentication response

email EMAIL  |Email address of user

port uint port to contact the client on
|setver uint index into servers table of the server handling this user
thread uint thread number (or other identifier) on that server.

notice uint frequency in days requested for notification

time_left datetime |Unix timestamp of when disconnected, set to 0 during session or after cleanup.

Total Size 370 bytes per user

emailaddresses

This table contains the email addresses that a user has. When a user registers, one email address is added to this
table. Subsequently (as a 'preferences' capability on the client) the user can add additional e-mail addresses. This
requires a suitable message package and a server processing of same. When Flycode is installed, a validation code
1s generated and passed to the client. To receive messages, the member must validate by entering this code. When
that is done the validationflag is set to 1

Column Datatype|Description/Comments

rowid uint autoincrement

userid USERID |user's login id

validationflag CHAR1 |0 when Flycode installed, 1 when member has validated their email address
email EMAIIL ]Email address of user

validationcode CHAR10 {Used during validation process

Total size 101 bytes per email address

userfiles

This table contains the media files that are currently available on the Flycode network, identified by users that have
them. When the user logs in the index is uploaded into this table; on log off your entries are purged. If a user
attempts to access a file that is no longer connected, an error is generated

See In Process / Record User files by IP for changes to this.



US 2002/0049760 Al Apr. 25, 2002
100

Column Datatype|Description/Comments

rowid nint autoincrement

hash HASH |hash value of the media file

userid USERID |user pame of user having this file (note this changes to sessionid with changes to
user IP rather than user. )

time_entered_online|datetime |connect timestamp

connection_speed JCHARS |from users file

Total Size 97 bytes per file online

files

This is the table of Flycode media files. Whenever a new file hash is loaded in an index, a row is added to this

table.

Modification Scheduled in InProcess: LastSeen

Column Datatype|Description/Comments

rowid uint autoincrement

hash HASH  |hash value of the media file

mimetype CHAR?20 |image/jpeg, image/gif, etc.

adult CHARI1 |[flag 2 = adult 1 = unmarked, 0 = family friendly
copyright CHARI1 |[flag 0 =OK 1 = suspended 2 = copyright 3 = illegal
filesize uint in bytes

thumb HASH  fhash value of the media file's thumbnail, if any
notransfers uint the number of transfers of the media file
lasttransfer datetime [timestamp of most recent transfer

private CHARI1 |1 = Dby invitation, only , 0 = public

creator USERID |The creator of this file where known

Total size = 167 bytes

comments

This table contains comments contributed by viewers on media files.

See proposed change for Private Labels to add "network” field.

Column Datatype |Description/Comments

rowid uint antoincrement

hash HASH hash value of the media file
timestamp datetime |timestamp when loaded

comments CHAR255 the comment entered by the member




US 2002/0049760 A1l Apr. 25,2002

101
usertd USERID jusername from login of the commentator
collectionid uint optional -- only if in collection
Total size 357
collections

This table is a list of media collections (file clubs), identified by owner. This is one of the tables that is searched
when a search query is processed. This table is searched first and if the max number of hits is not achieved, then
the elements table is searched

See Modification Scheduled in InProcess: Content Serving

See proposed change for Private Labels to add "network” field.

Column Datatype }Description/Comments

rowid nint autoincrement

userid USERID jusername from login

name CHARG6C |[file club name

description CHARZ2S5 |description of file club

private CHARI1 |flag 1 =by invitation, only , 0 = public
timestamp datetime {timestamp when loaded

hash HASH A hash of the values sent with the last Upload_Collection
size uint Count of elements for this collection
imagecount uint Number of images in the collection
videocount uint Number of videos in the collection

Total Size 438 per collection
elements

This table contains the descriptions for a media file as added by various file club owners of that image. This is one
of the tables that is searched when a search query is processed.

Column Datatype |Description/Comments

rowid uint autoincrement

collectionid uint rowid in collection table

filename FILENAME|name of file as it appears in this collection

time_added datetime time at which the fileclub element was added

hash HASH hash value of the media file

description CHAR255 |file club owner's description of media file

collections_private|CHARI 1 if the collection is private, and therefore the elements should not be searched.
nmessages

this table stores messages that are being sent to a friend. The number column is decremented when 2 message is



US 2002/0049760 A1l Apr. 25,2002
102

sent. When it zero the message is deleted. A message is added to this table if it can not be delivered at the time the
server processes it. Messages to e-mail addresses will be sent antomatically by the server so this only applies to
messages to Flycode users that are not logged on at the time the message is sent to the server. A purge routine
should remove messages after some period of time.

Column Datatype |Description/Comments

rowid uint autoincrement

username [USERID  [user's login id of message sender

sendto CHARZ255 |list of recipients (Flycode and email) in text form

subject CHARSO0 |subject string sent from client

messagestring CHAR255 message string sent from client

time_added datetime time at which the message was added to the table
hash HASH hash value of the media file being referenced in the message
|number int the number of messages remaining to be sent

name FILENAME(the name of the file

collectionid uint optional - if there is an identifiable collection associated with this message

Total size 733 bytes per message
messageemail

Records emails addressed to non-apple soup users.

Column Datatype|Description/Comments

rowid uint autoincrement

messagenumber  uint the rowid of the message in the messages table

sendto EMAIL ([email address of this recipient

time received datetime |Hme at wh}c.h.message (not the email message, the web page) read by the

- recipient- initially set to 0

seed CHARI10 |initialized to a random value when the record created
Total size 90 bytes
messagelist

the list of addressees for a message. When a user logs on a search is done of this table and those messages that
appear are delivered. The corresponding rows on this table are deleted and the counts in the messages table are
decremented and a record added to messageslog. (NB this requires a message structure to exist on the client to
store such messages until they are viewed

Column Datatype|{Description/Comments

rowid uint autoincrement

messagenumber  |uint the rowid of the message in the messages table

userid USERID Juserid of the Flycode user that the message is for

reminded datetime |When a reminder was sent via email (typically 48 hours after message send)

Total size 80 bytes



US 2002/0049760 A1l Apr. 25,2002
103

feedback

This table contains answers from responses to forms - a set of answers from a single form or set of forms is
grouped by a response_id. The table is filled by the JSP code behind pages like feedback htm, question_id comes
from the NAME field of a form, and answer is the result (URL encoded). Note that the forms may include hidden
fields set by parameters in the URL, such as for example the user's Flycode id.

See proposed change for Private Labels to add "network™ field.

Column Datatype |Description/Comments

rowid uint autoincrement
{time_added datetime |time at which the transfer took place
response_id HASH  |same for all queries during same session with web server
Hquestion_id CHAR40 |id given in <QUESTION ID attribute
answer CHARZ255|answer as entered by the user.
"Total size 347 bytes

language

contains multilingual strings for use by the server, the server will look for example for the English version of string
"welcome". Currently there are no strings sent back by the Flycode Server to the client, so this table is only used
by the JSP pages.

See proposed change for Private Labels to add "network"” field.

Column Datatype |Description/Comments

rowid uint autoincrement

stringid CHAR20 |a messageid

langnage CHAR20 Ieagg?:r%’e ;ffiz;‘f{gj gi specified in rfc1766 which refers to 1S0639 and ISO3166
text CHAR255 ltext of string in UTF8

string+language is a composite key.
Total size 305 bytes
viralemail

This table lists each email address that is used in the messaging system. The first time the email address appears a
new row with that address is added with the inittime & recenttime time stamps being set, and regtime being null
and the dontsendflag being set to 0 and count to 1. Bach time a subsequent mail is sent to this same address, the
recenttime datetime stamp is set with that time and count incremented. If the address is registered as a Flycode
user, the regtime timestamp is set. If mail to this address bounces back for invalid address, the dontsendflag is set
to 1 and a message sent to the sender. If the recipient sends a don't send message the dontsendflag is set to 1. (note:
may want to refine this so that more than one not delivered is required before it is removed.



US 2002/0049760 A1l Apr. 25,2002

104
Column Datatype|Description/Comments
rowid nint autoincrement
emailaddress EMAIL |the email address to which the message is sent
dontsendflag CHARI l(il i;f acl)jlfiay to send mail to this address (default), 1 if recipient declines receiving or
inittime datetime ]time at which first email was sent to this address
recenttime datetime |time at which the most recent email was sent to this address
regtime datetime |time at which the recipient registered a copy of Flycode
count uint incremented each time a message is sent

Total size 121 bytes
tlivesubscriptions

icontains a list of which currently online users are subscribed to which collections. These entries are removed on
‘logoff.

Column Datatype{Description/Comments

rowid uint autoincrement
‘(userid USERID |userid of subscriber
coltectionid vint Rowid of Collection

hash HASH [hash of last version seen by user.

Total size 152 bytes per subscription
servers
contains any information that needs to be kept across servers. Note that the rowid is used as an index in other

tables. This table will be expanded to hold any information that needs to be accessible across different servers, for
example to an administration program.

Column Datatype|Description/Comments
rowid uint autoincrement

r IPPORT [ip address and port in hex
dbcheck

contains information that is used in performing consistency checks on the database

Column Datatype|Description/Comments

rowid uint autoincrement

foreignkeytable CHAR2S5 [a table name in this database

foreignkeycolumn  [CHAR25 |a colum name from that table

referencedtable CHAR25 |a table name in this table that the entry in the foreignkeycolumn points to
referencedkeycolumn]CHAR2S |the column which entries in the Foreignkeycolumn point to.




US 2002/0049760 A1l Apr. 25,2002

105

exedataplat

[Column  [Datatype [Description/Comments

lrowid JUINT OT NULLJAUTO INCREMENT, PK

|ﬁmajorversion INT

. : Version of Flycode client application
IN 4 pp: : :

"rm?lorverswn T Flycode/<major_version>.<minor version>.<build> <platform>|
[build INT e.g Flycode/1.0.450 PC

platform __ |[CHAR10

[exedataid INT Checksum of the block

exedata
3Cotumn|Datatype Description/Comments
drowid JUINT [NOT NULLJAUTO INCREMENT, PK
fes0  JINT
des...  JINT
Jes99 JINT

100 Rows will be inserted (per platform) in this table while making client build live.
See the server spec for how this data is used. This data is precalculated during the client build.

In the future, we can further optimize this process by making separate tables per platform

Log Tables

transferlog

This table is the list of successful transfers. Note that userid i8s NOT recorded.
See proposed change for Private Labels to add "network" field.

Column Datatype|Description/Comments

rowid wint autoincrement

time added datetime ]time at which the transfer took place
hash HASH |hash value of the media file

fields will be added here to record demographics to be specified by Cate, these will

demographics be obtained from the users table, but userid will not be recorded

Total size 52 bytes
searchlog

This table logs searches. Note that userid is NOT recorded.
See proposed change for Private Labels to add "network"” field.



US 2002/0049760 Al Apr. 25, 2002
106
Column Datatype|{Description/Comments
rowid uint autoincrement
time_added datetime [time at which the search took place
term CHARS0
number_results uint number of results returned
Total size 120 bytes
transferfailurelog

This table logs transfer failures. Note that userid is NOT recorded.
See proposed change for Private Labels to add "network" field.

4Column Datatype|Description/Comments

rowid uint autoincrement

|timestamp datetime (time at which the search took place

[hash HASH  |hash of file that was being transferred
ip IPPORT |[IP number and port (from user's table) that was being contacted
reason CHARA4( Jreason for failure - this may have internal structure to be defined.

Total size 100 bytes

Statistical Tables

The follbwing tables are used to monitor various aspects of the usage of the database. They are generally populated
with snapshot data which are recovered by processes that are spawned by a scheduled (e.g. cron) process.

See inprocess.htm for changes to this
logonsession

a record of the logon sessions

Column Datatype|Description/Comments
rowid uint
userid USERID [userid

logon timestamp datetime |the time at which logon occurred

logoff timestamp datetime |time at which the logoff occurred

Total size 90 bytes

numberofdownloads

gives the number of downloads to that time. This is a process that goes to the download site(s) and registers the

count at those sites at the time

lColumn l Datatype]DescriptionlComments



US 2002/0049760 A1l Apr. 25,2002

107
rowid nint autoincrement
value uint the count
site CHARI10 {the download site
timestamp datetime |time at which the count was taken
total size S0 bytes
counters

This is a generic table for counting something for statistical purposes.

4Column Datatype|Description/Comments
Hrowid uint autoincrement
lid CHAR20 |an id
{count uint the count
timestamp datetime |time at which the count was taken
description CHARSO |Description of the counter - e.g. who is using it, or what it is counting
Total size 140 bytes

This table is used to record an incrementing, or periodic count. A process wishing to increment the count for
id=foo would increment the count for the record with id=foo and timestamp=0 (or null or whatever). Alternatively
a process just wishing to record a count can create a new record with a specified id and current timestamp.

Periodically - and this might vary based on 1d - the server will set the counts, and create new records with
timestamp=0.

Consistency Checks

The following consistency checks can be applied periodically to check the integrity of the database.
o All of {livesubscriptions:userid, livesubscriptions:owner, etc.} exists in users:userid
o Foreach collection in collections { collection:size = count(elements: elements:collectionid =

collection:rowid) }
o more are fo be defined here.



US 2002/0049760 A1 Apr. 25, 2002
108

APPENDIX E

Provisional U.S. Patent Application No. 60/212,177 Entitled:
File Distribution and Storage Apparatus and Method Over a
Global Network



US 2002/0049760 A1 Apr. 25, 2002
109

Provisional U.S. Patent Application

Inventors: Scott, Adrian C.H. , San Francisco, CA
Assignee: AppleSoup, Inc.

Filing Date: June 16, 2000

Attorney: Michael Louie

Abstract

A distributed storage and transfer system for audio, image, video,
and other data files. Files are stored in distributed clients and are
accessed through directory information that resides on central
servers.

Background & Description of Invention
Existing architectures for file distribution store the files on central

servers (Figure 1), which are accessed by individual client
programs.

Figure 1:
Centralized File Storage and Transfer Architecture, in which files
are stored in central servers and accessed by distributed clients




US 2002/0049760 A1l Apr. 25,2002
110

Figure 2:

Distributed File Storage and Transfer Architecture, in which files
are stored on distributed clients and transferred between them via
the central servers

The present invention stores individual data files on distributed
client systems, with directory and metadata residing on the central
servers (Figure 2). Files are transferred directly from client to
client through connections made by the central server. This system
has numerous advantages over the prior art, including greater
scalability and economical data storage.

Figure 3, below, displays a diagram of the preferred embodiment
of the inventions claimed and serves as a reference used in
descriptions of the workings of the inventions.

Distributed file storage:

Data files are stored on the individual machines comprising the
network of distributed clients, rather than on the servers of the
system itself.

The servers to which the clients connect are in turn connected to a
single database containing Mectadata information about the data
files that are known to the system, but these servers do not contain
the data files themselves, which remain resident on the distributed
client machines.



US 2002/0049760 A1l Apr. 25, 2002
111

Figure 3:

Architecture of Preferred (AppleSoup) embodiment, in which files
are stored on distributed client systems and transferred between
them via central servers.

Data File Lists

Indexes

Metadata

Server Server Server

Internet

1 Data File I' ;




US 2002/0049760 A1l Apr. 25,2002
112

File Identification & Search:

Identical files are recognized as such through the creation of file
'fingerprint' identifiers, accomplished by using hashing functions
such as MDS5 to create identifier strings which uniquely correspond
to the data contained within the data files.

Clients which connect to the system make the files on their
machines visible to and available to other clients who may also be
connected to the system. The master list of data files which are
known to the system is located on the servers and can be searched
by any client which is connected to the system.

For example, in Figure 3, Client B connected to the system sees
that Data files 1 and 2 are available for transfer. Data file 1 is
available from two different sources, Client A and Client C,
where in the latter case it has been renamed to Data file 1'. Using
the system’s file identification algorithm, is still recognized by the
system as being the identical to Data file 1, and is therefore treated
as such.

File Sharing:

Client B may request a transfer of any data file known to the
system to its host machine. For example, the user at Client B may
request the transfer of Data file 1 to its machine. That request is
processed by the server, which, on the basis of certain parameters
(such as transmission speed, other file transfers in effect, available
bandwidth, geographic location, and client identifier)
automatically selects the source client from which the transfer is to
be initiated --in this case Client C --and permits the two clients to
transfer the file between them. The Data file lists stored on the
central server are updated to show that Data file 1 is now located
on Clients A, B, and C.



US 2002/0049760 A1 Apr. 25,2002
113

If the transfer of Data file 1 between Client C and Client B is
interrupted for any reason, such as Client C being disconnected
from the network, the system automatically resumes the file
transfer using the copy of Data file 1 residing on Client A. The
transfer is resumed at the point of interruption, so that the portions
of the file which have already been transferred to Client B do not
need to be re-transmitted. Furthermore, if the interruption is
caused by the disconnection of Client B itself, the data file transfer
is automatically resumed from a valid source once Client B re-
connects.

Simultaneous downloads:

Identification of identical files permits clients to download a data
file from multiple source locations simultaneously, with different
portions of the data file being received from different locations and
then re-assembled at the destination. Thus in the transfer above,
the first half of Data file 1 might have been transmitted from
Client A, and the second half from Client C, with the pieces
properly re-assembled at destination Client B

Distributed file hierarchies:

Data file indexes and hierarchies are created by each client on its
host machine as an AppleSoup fileclub and then unified into a
single structure on the central database. Thus if Data file 1 on
Client A i1s classified into a fileclub called 'Pets', and Data file 2
on Client C is classified into the same fileclub, then any clients
connected to the system would see both data files appearing under
the Pets fileclub on the central data file listings.

Client Authentication:

When a client attempts to connect to the server the attempt is
allowed only if the client is identified an AppleSoup client. This
authentication is achieved by creating a ‘session challenge key’ on
the server which is passed to the client together with an
authentication request. The session challenge key is created by
using the MD35 hashing function on a string of data that includes



US 2002/0049760 A1 Apr. 25, 2002
114

information such as the time and a location identifier. This session
valid key must be correctly interpreted to return a response which
is created by taking an MD5 hash function value on a string of data
which includes user identification, other data passed by the session
valid key and a portion of the client software code which portion is
identified in the session challenge key location identifier. Since
the location changes randomly, this effectively prevents the
connection of any client software which is not identical with
AppleSoup’s client software.

Database Integration:

The preferred embodiment system uses one single database for its
metadata and directory information. This database is accessed by
all servers. Alternate embodiments may used multiple databases
which may be accessed independently of each other by the servers.

The preferred embodiment is more fully described in the following
attachments:

> Client specification attachment

> Server specification attachment
» AppleSoup Database specification attachment

Claims
A distributed data file storage and transfer system comprising:

> Distributed file storage: Data files are stored on distributed
clients. See Server Specification, Get_File.

> Central repository for metadata: Only file metadata
identification and descriptor information (e.g. name, location,
size, comments, captions, and other data fields) is stored on



US 2002/0049760 A1 Apr. 25,2002
115

the central servers. See AppleSoup Database Specification
Attachment, files table specification.

> File identification: Files are uniquely identified by file
signature function, where the file signature is the unique
index identifier of the file. This is accomplished by
performing MD5 on the entire file, creating an identifying
string. This procedure allows files which differ only in name
to be correctly identified as the same, and simultaneous
piecemeal transfer of a file from multiple sources. See
Server Specifications Attachment: Media file Hash finction.

» Source file auto-selection: Source file selection is
performed automatically by the system, (from the available
source files). See Server Specification, Get File.

» Auto-reconnect: Interrupted transfers are resumed
automatically upon reconnect, resuming transfer at the point
of interruption. See Server Specifications Attachment:
Connection Loss.

» HTTP protocol: Distributed client system architected and
implemented using HTTP protocol. See  Server
Specifications Attachment: Communications Protocol.

» Single database: Distributed client system architected to a
single database, which stores all metadata and directory
information and which can be accessed by multiple servers.
See AppleSoup Database Specification in its entirety.

» Distributed database: Distributed client system architected
using distributed databases, where servers may access
different and distinct databases.



US 2002/0049760 A1 Apr. 25,2002
116

» Distributed indexes: Distributed file indexes and
hierarchies. File hierarchy is created by the distributed client
systems and unified on the central servers. See Client
Specification, File and Data Storage Structures.

» Client authentication:. Access to the functionality of the
AppleSoup system is only available through AppleSoup
client software. The client authentication key includes an
electronic fingerprint of a randomly selected portion of the
client software as part of the identification key used in a

given connection session. See Server Specifications
Attachment: Connection Establishment and Authentication
and Loss.

> Simultaneous Downloads: Data file transfers can be
executed with different segments of the file coming from

different client source locations. See Server Specification,
Get _File.



US 2002/0049760 A1l Apr. 25,2002
117

AppleSoup
Server - Specification

(Company Confidential)

Last updated: 19th May, 2000

© Copyright AppleSoup Ltd., January 2000

Purpose [Back to Spec Index.

The purpose of this document is to provide a design § Contents
specification for the server portion of the alpha release;!
of AppleSoup. This specification is to be used by

il e Next Steps - _ %
AppleSoup developers as their guide in the I e Nondisclosure
preparation of the AppleSoup server component. ! o Technical Control. .

* Overviéw of the AppleSoup Product -

The alpha version of AppleSoup is intended to have s Constraints
the functionality of the version 1.0 release, as il o Server Architecture : o
presently conceived, to the greatest extent possible. e Design Considerations .
Achievement of the design objective will permit a o Media file Hash fundtion
rapid move to the launch of AppleSoup in mid- o Encryption
February. - o Language

I e Communications Protocol
The purpose of this document is to provide a design ||« Error Messages :
specification for the server portion of the alpha release{ o Proxies N
of AppleSoup. This specification is to be used by e The Server Application

Y ey o

AppleSoup developers as their guide in the o Connection Establishment

preparation of the AppleSoup server and client i » Authentication Backpround - .

components. The alpha version of AppleSoup is : » Unauthenticaied

intended to have the functionality of the version 1.0 m Authenticated

release, as presently conceived, to the greatest extent 5 m Connéction maintenance and

possible. Achievement of the design objective will | © . Timeout . . o

permit a rapid move to the launch of AppleSoup as | ~ » Connection Loss o

early as possible. o Information presented at any time :
o Login "

It is the intention of this specification to define a ; ) w <SOFTWAREUPATE ../>

server that will enable enhancement of the product = <MESSAGEOFTHEDAY ../>

without significantly rewriting the server code, and to | |

5



US 2002/0049760 A1l

118

achieve that, it is fairly general in places.
Next Steps

%
o Message of Day admin interface and database ;
e Consistency i
o Write up generic permissions/key |
handling mechanism !

o Write up feedback as JSP page 5

e Investigate and test through Proxies especially i
H

;

H

{

o How to use Keep-Alive for HTTP/1.0 proxies (see
RFC2616 secs 8 & 19.6.2)

o See version _information for other tasks
Nondisclosure

Use of this document and its contents and concepts is governed
by a Nondisclosure Agreement signed by CyberAge
Communications (1) Pvt. Ltd. (CyberAge).

Copyright and Intellectual Property

This document is the property of AppleSoup Ltd. All software
code and concepts designed under this project remain the
intellectual property of AppleSoup in accordance with the
proposal from CyberAge.

:
H
:
:
|
i
H

| Technical Control

This design and the control of the software specifications are
being managed by:

Mitra, AppleSoup Chief Technology Officer.
<mitra@earth.path.net>

All questions relating to this specification document should go to

Overview

For an overview of the AppleSoup product see the file f

u Other Elements
Upload Index
Upload_Collection
Search Request
Get_File Info

m Result Sets
Get_User Collections
Get_Collection

o 0 0O 0 O

Feedback
Post_Comment
Registration_Request
Forgotten Password
Administer

O 0O 00 00 0 00 00 o

= ;/Téiiéa;éwﬁnlail
s Send Message
s Email Address

o Emails for old Messages
o Database Design
o General Considerations

. 25,2002

Constraints

Time: Due to the fast track process for developing this product, this alpha release needs to be ready

for initial review on 28 January 2000.

In order to produce the Alpha as speedily as possible, it may be advisable for some parts of the
protocol to only be implemented in the simplest form required to complete the Alpha, and CyberAge



US 2002/0049760 A1l Apr. 25, 2002
119

are encourage to discuss with Apple Soup any parts of this code they would prefer to delay writing in
order to achieve a speedy Alpha.

If any other particular aspect of this specification creates difficulties with meeting that schedule,
CyberAge should communicate with AppleSoup immediately so that the correct tradeoffs are made.

Server Architecture

The server architecture will consist of:

e ONe Of more servers running:
o Linux
o Apple Soup Server application written in Java
e & server running:
o Linux
o MySQL - this may at some point be replaced by a higher end database such as Oracle

During the initial testing these two servers may be physically one box, but this should not be assumed
since splitting the middle-layer is critical to scaleability.

Design Considerations

o scalability: The AppleSoup application will originally reside on one server (and the alpha
version of the software can be built with that capability). However, it is expected that the
AppleSoup server application will eventually reside on many different servers possibly in
many different physical locations. This will require that an AppleSoup connection
request will be arbitrarily assigned to some one of those servers and will then be
executed from that server, as the result of some, yet to be designed, load and location
balancing algorithm. The code that is developed should facilitate this process. The actual
design of such a network is the subject of another design document which is being
developed over the next few weeks.

o simple, reuseable code. The growth of the AppleSoup product is expected to be
substantial and rapid., both in terms of volume of users and in terms of functionality of
the product. It is imperative that simple, modular coding techniques be used and that all
code be constructed using reusable code design techniques. It is imperative that the
coding team members be in close communication to ensure that this happens.

o efficiency. The server must be designed to handle a large load, for this reason the code
should utilize a design optimized for high volumes of simple transactions rather than
low-volumes of complex transactions. Some specific requirements are:

s The Server should be memory resident, monitoring the port, it should not be
launched each time an incoming request arrives.

» It should, if possible, use threads so that a single process can handle the entire
server

» If threading is not possible, then the Server needs to fork a process pool and use
that as needed.

Mitra has extensive experience in designing efficient servers and will be available to help
with this process.



US 2002/0049760 A1l Apr. 25, 2002
120

o database independent. The initial database for the AppleSoup application is MySQL. It
may prove necessary at a later date to migrate to a more traditional database such as
Oracle or Sybase so as to have the necessary database engine characteristics for a large
volume application. To facilitate an easy transition all database access should be done
through functions that can be easily replaced to accommodate a different database
engine.

o All interaction with the server, for maintenance activities, should be designed to work in
either unix command-line mode, or through a HTTPS/HTML interface on the same, or a
seperate port. See the "Administet” command below

Media file Hash function

There is a problem in identifying media files, so that the same file, if resident on different client
machines, is 5o identified. Files are identified throughout the system by a hash function. The function
used is MD3 performed on the entire file. This is converted to a 22 character Base 64 string.

Encryption

It is intended that all messages passed between the AppleSoup clients and servers should be
encrypted. In the alpha version of the software, this encryption will not be done,in the future it is
likely that HTTPS will be used.

Language

Anywhere that the server is presenting a string to the user, it should look the string up from the
"languages” table, based on the language presented by the user in the "Accept-Language" http header,
if this header is not present then "en" should be assumed. Where a specific Language is not available,
then the closest should be presented, so for example if "en-US" is specified and not available then
"en" should be used. If none of the specified languages are available then "en" should be used. See
RFC2616§14.4 for the format of Accept-Language.

Communications Protocol

The server will communicate with the clients using HTTP or in the future HTTPS over TCP/IP.

The developers are encouraged to use standard HTTP Java classes for this to facilitate future
upgrades, and to enable easier support of clients accessing through proxies for example. It is crucial
that both client and server ignore any HTTP headers it doesn't recognize as these may have been
added by Proxies etc., or have been added at the Server to allow it to work in other circumstances.

The Protocol has been designed to be as state-less as possible, the only state that the server should
need to maintain about a connection / user is whether they are connected or not, and the list of files
they have available.

This protocol may be changed at some point in the future, so - without performing unneccessary work



US 2002/0049760 A1 Apr. 25, 2002

121

- the HTTP specific parts should as far as possible be in seperate portions of the code (classes?) to
facilitate a potential change in the future.

Error Messages

The Server returns HTTP status codes as close as possible to the standard ones. The General meaning
of the status codes that are likely to be used are:

Code 5 Meanmg Crz?ul::la;;s

[2()0 OK o X%Success results follow ) %

'; The requested item was created on the server (note i
201 Created HTTP requires the URL of the result in the Location

) _ |field, weskip that)

204 No Content Success - this is used where there is no result to send

. back e i

7 . :

The syntax of the request was invalid (e.g. two "?) ora .

400Bad Request _/hash that contains something other than 22 characters. ‘

401 Unauthorized ~ |The client needs to Authenticate itself ] ;

403 Forbidden The server will not allow anyorne to do What was Just §

_fasked R §

4_"_.4 Not Found {The reque_s_t_ed tte_m__yvas not found o [ N

1500 Internal Server Exror };Any 1ntern'a1 server error - obwously shouldn t be i

Lo e . pABPPEINGE |

Returned if the there is a temporary problem for :

503 Service Unavailable jexample unable to open connection to the Database !

Server,

Depending on the Server design, some of these might be generated in common code, for example by
the HTTP libraries, or for example, a piece of code that parsed tha GET request into a data structure
of parameters might return a 400 on invalid syntax.

Refer to RFC2616 for other HTTP error codes, some of which might be generated by libraries or
Server code, for example if a client requested HTTP/2.0 the server might return a 505 error code.

In HTTP the Server is encouraged to return an entity (i.e. a document) describing in more detail the
error. The AppleSoup Server should be configurable to run in two modes, in Operational mode, the
minimal, least helpful error is returned with just enough information so that the client can work

properly. In Debug mode, as much information as is available should be returned with the error, to
facilitate debugging.

In the command by command descriptions below, only errors specific to that command are described.



US 2002/0049760 A1l Apr. 25,2002
122

Proxies

Proxies can lead to a number of complications, firstly the client has to identify (from the Browser's
Internet preferences) that a Proxy is being used.

o The HTTP version number may get mangled, so the server shouldn't be fussy about seeing
HTTP/1.1

o The User-Agent should not be mangled, but if we find that it is, then we'll need to include it in
the URL.

» The Proxy may refuse to keep an open connection, in this case the server will have to deal with
a new connection for each request, this will lead to complications with the client acting as a
server of files. These complications are to be addressed later.

o The Proxy may require extra headers from the server, and serve up extra headers to the Client,
the Client should ignore all headers it doesn't understand

o The Proxy may implement HTTP/1.0 which the server handles a littie different using "Keep-
Alive".

The Server Application

The server application will be used to handle all areas of interface with client users. It is a modular
application which analyses an incoming service request to determine the service needed and then
processes that request. This section details the service requests of the application.

Connection Establishment and Authentication and Loss

Authentication background.

simple and sends passwords in plaintext, Digest is complicated and still wouldn't allow us to check
the client is genuine. However, the system was designed to be extended, for example Proxies are

required to pass through the authentication info untouched so designing our own became the best
option.

In order to check that it is a genuine AppleSoup client, the best thing is to be able to perform a
calculation based on the code itself, then a counterfeit client would also need to include current
AppleSoup binaries as well.

Connection opening

The Server will receive an incoming HTTP request, and open a persistent connection. In HTTP/1.0
this has to be explicitly stated through "Keep-Alive", in HTTP/1.1 it is the default. Note that although
the Clients will all be HTTP/1.1, the Server is likely to have to talk to Proxies running HTTP/1.0,

Unauthenticated

If this request does not contain any Authentication Information (as is the case for the first attempt by
the client to talk to the server) and if this command needs authentication (most do, currently only



US 2002/0049760 A1l Apr. 25, 2002
123

"read_message" does not), then the server will respond with an error code of "401 Unauthorised" and
with an HTTP header of:

WWW-Authenticate: AppleSoup realm="applesoup.com”,
nonce="987654321:1a2b3c4d5e6£7g8h%i0j1lk"

Where the value of the nonce is defined as:

TimeStamp ':' MD5 (TimeStamp ':' PrivateKey)

where the TimeStamp is the Unix timestamp (number of seconds since 0:0:0 UTC 1970) and the

PrivateKey is a random siring known only to the server, and should be generated at Server
initialization.

Mitra:ToDo: either fix this string over time, or change Read_Message not to use PrivateKey

CodeReview: ToDe: Check this string is random, not fixed as in first version

Authenticated

If the request contains an HTTP "Authentication" header it should take the form.

Authentication: AppleSoup realm="applesoup.com"”, nonce="987654321:1a2b3c4d5e617g8h9i0ji k", user="jsmith"
response="1a2b3c4d5e6f7g8h9i0j1k"

The server should check the response using the following algorithm.

First check that the nonce is current, by comparing the TimeStamp (the part before the ') with the
current time, this means that it is less than 1 hour old (that time difference should be configurable). If
the nonce is old, then the request should be treated as if it did not contain any Aunthentication, and a
401 error generated as above with 2 newly calculated nonce, BUT the string ',stale="1"" should be
appended.

If the nonce is current, then check if the users DB contains a cached "authenticate" field, and if so
check that whether the entire Authenticate line matches this cached value (a standard string
comparisom should be sufficient). If it matches go to "Got-It" below.

If the nonce is current, but there is no cached entry, then check whether the nonce is valid, by
calculating MDS5(TimeStamp "' PrivateKey) and checking against the second part of the nonce
supplied by the Client. (Note use the TimeStamp from the nonce, not a current TimeStamp). If the
nonce is invalid, then a 401 error should be generated as above, and the attempt should be logged as it
might be a symptom of a hack.

If the nonce is valid, then check the response matches:
MDS5( MD5(user ":" realm ":" password) : nonce : exedata)

Where "MD5(user "' realm "' password)" is stored in the password field of the "users" table in the
DB.



US 2002/0049760 A1l Apr. 25,2002
124

Where "exedata" is a portion of the .exe selected by looking at the last few bits of the nonce.
First, the "User-Agent" HTTP header is parsed to discover which version of the Client is being used.

Then a 256 byte chunk is chosen from the server's copy of this Client. This is done by looking at the
last two characters of the nonce, Ashish ToDo: Define algorithm to go from last two chars to
bytes from database. To counterfeit a client would require guessing this algorithm - extremely hard
just from packet sniffing, since we MD35 the result, *and* a complete copy of the real client available
at run-time.

If the "response" does not match as above then a 401 error is returned with a new nonce.

if it matches, store the Authentication information in users:authenticate, and store the thread
information in users:thread and users:server.

Got It!
If this is the first time that Authentication has succeeded on this TCP/IP connection,then:

o If users:online == | then signal other server threads that the user needs to be disconnected.
« Store the entire "Authentication” header in the authenticate field of the users table
o Set the "users:location” field to the hex value of the users IP address.

Connection maintenance and Timeout

The client will maintain a connection open, using standard HTTP/1.1 mechanisms. The server should
time out idle connections after a configurable period of time, close the TCP/IP connection and treat as
a "Connection Loss".

Note also that the Authentication algorithm may time out the "nonce" and send a "401Unauthorised"
message in response to a genuine request, in this case, the WWW-Authenticate line will contain
'stale="1"," the client should spot this, and recalculate the Authentication string based on the new
"nonce", without re-requesting userid and password

Connection Loss

When a connection with the client is lost, it is possible that either: the user chose to disconnect; or
some part of the communications chain broke. In the latter case, the client will attempt to reconnect.

The server has already cached the Authenticate information, in the "users" table, and it should not
delete the list of files on the client. If a client then atiempts to connect using the cached Authenticate
field, then the server should reconnect the client as if nothing had happened.

The server should set the [P Address for the user in the "users" table to 0, and set decrement online
(we used to set it to 0, but decrement handles the case of dual login) and set time_left to now.

After a configurable delay the Server should remove the user's file from its list of available files, and
delete the cached Authenticate information from the users table. See Periodic:user cleanup.




US 2002/0049760 A1 Apr. 25,2002
125

Information presented at any time

Each time the Server responds, it has the opportunity to include some extra XML into the response.
The client should watch for this information, which might have nothing to do with the information
asked for, and take action accordingly.

Some specific examples are documented in the Login section which describes how a XML
component may be generated during a session for: <SOFTWAREUPDATE.../>
<MESSAGEOFDAY .../> and <MESSAGES .../>

In cases where the server would have responded with a 204 (success but nothing to send back), then it
should reply with a 200 status code and the extra entity.

Login

"GET /login?port=1234" should be the first call on every new connection, but not neccessarily if the
client is just re-connecting after a communications interuption. The server will store the port in the
"users:port" field.

The server will be constructing a XML document to send back to the client which will have zero or

more components defined as below. See Comms Protocol: Connection Establishment for the
structure of the full document.

The server will set time left to 0.

<SOFTWAREUPATE .../>

DO NOT IMPLEMENT THIS SECTION YET, THIS WILL CHANGE BASED ON ACTIVE
INSTALL

The server should look at the User-Agent HTTP field which will take the form.
User-Agent: AppleSoup/1.2.3456 PC

The server should first check against the cached curvent build of the client, and if the User-Agent
matches, it can omit the SOFTWAREUPDATE element.

The server looks up the User-Agent in the "useragent” table, which will contain information for prior
versions of the client. The server should progressively look up the full version and build (major=1
minor=2 build=3456 platform="PC"), if this is not found, it can look up (major=1 minor=2) and if
this fails it can look up (major=1). The results include status, the URL of the upgrade value and a
textual reason, which should be returned to the client as for example:

<SOFTWAREUPDATE version="1.2.1457" platform="PC"
url="http://www.applesoup.com/downloads/upgradel .2 x.exe” expiry=9876543 why="Fixes a few cosmetic bugs"/>



US 2002/0049760 A1l Apr. 25,2002
126

"expiry" specifies three possible states.

o Ifexpiry == 0, then the version is still supported.

o Ifexpiry == -1, then the version has expired and the server should disconnect this connection
after sending the response.

o Otherwise, the version is supported but will not be after the date and time specified. The client
could display this to the user in the form "This version expires in 10 days, would you like to
download and install a new version”,

This procedure allows AppleSoup to decide which prior versions of the client to support, and to
provide quick upgrade packages rather than requiring a full download each time.

This XML component could also be generated at any time that the useragent table is changed in o
way that effects a logged-in user. This is required since some users with permanent net connections
might leave AppleSoup permanently on.

END OF SECTION NOT TO IMPLEMENT

<MESSAGEOFTHEDAY .../> (from Beta:1)

The Server should look for a MessageOfTheDay value in the languages table at stringid=. If present,
the XML document should contain a message such as.

<MESSAGEOFTHEDAY text="Welcome back"></MESSAGEOCFTHEDAY>

This XML component should also be generated for all existing users when the Message changes
during their session. Note that this gives us a requirement for some synchronisation between threads
on the server so that one thread knows when this has changed.

<SUMMARY .../>

The Server constructs an XML file giving a digest of what it knows about the client, to allow the
client to update any changes.

<SUMMARY>

<COLLECTION name="India" description="My photos of India" private="0" hash="1a2b3cdd5e6f7¢g8h9i0j1k" />
<COLLECTION name="Pets" description="My furry critters"” private="0" hash="la2b3c4d5e6£7g8h8i0jlk"/>
</SUMMARY>

The hash records what is known about the files in the collection. On receipt of this information, the
Client can compare this information with its own calculations of these values, and then send
Upload_Collection commands for changed collections.

<MESSAGES .../>

The Server should check the "messagelist" table for any messages waiting for this user. If there are
any then the XML document should contain:



US 2002/0049760 A1l Apr. 25, 2002
127

<MESSAGES>

<MESSAGE from="patel" to="jsmith, fred@somewhere.com"” subject="Wow" text="this reminds me of home" hash="alb2
</MESSAGES>

The <MESSAGES> component may also be generated during a session when a message arrives fora
logged in user.

<ERROR .../>

When the Server generates an error, it should - depending on whether it is running in a debug mode,
pass this message back to the client as part of the response. The client should display thisin a
dialogue box.

<ERROR class="Collection” text="Collection name too long"/>"

<COPYRIGHT .../>

When the Server sees that a file is copyright (in TBD) or illegal, it should pass this message back to
the client as part of the response.

<COPYRIGHT/>
<FILE hash="1a2b3c" reason="1">
</COPYRIGHT>>

The client should display this in a dialogue box prompting for deletion.

Other Elements

It should be assumed that other elements will be added to the Login response in the future.
Disconnect

The server may receive a Disconnect command as a simple GET when the Client knows that it is
disconnecting, for example because the user has explicitly done so, or shutdown the machine etc.

This will be a simple GET

GET /disconnect
Host: server.applesoup.com
Accept-Lanuage: en, fr;q=0.5

The server should take the actions that would happen had a connection been lost, but can also take the

The server responds with a 204 status code.
Upload_Index

The server should receive a POST containing an XML file of the hash value for each file available
from the user's machine.

<?zml version="1.0" encoding="UTF-8"?>



US 2002/0049760 A1l Apr. 25, 2002
128

<!DOCTYPE AppleSoup SYSTEM "http://www.applesoup.con/support/applesoup.dtd">
<FILE_INDEX>

<FILE hash="1234567890123456789012"/>

<FILE hash="5678901212345678901234"/>

</FILEINDEX>

The server should parse this file, and add each Hash along with the userid (from the Authentication
information) to the "userfiles" table. Note that any previous files that the user has should have been
deleted when the previous connection was dropped, but the server should check and delete anyway.

If there are any files in the list with copyright >1 then a<CQOPYRIGHT....> message should also be
returned, files with a copyright >0 should not be added to the database, the operation should still
complete successfully.

A success code of 204 should be returned.
Upload_Collection

The server should receive a POST contain an XML file with information about each file in the
collection.

<?xml version="1.0" encoding="UTF-8"7?2>

<!DOCTYPE AppleSoup SYSTEM "http://www.applesoup.com/support/applesoup.dtd">

<COLLECTIONS>

<COLLECTION name="India" description="My photos of India"™ private="0" oldhash="1a2b3c4d" hash="5e6£7¢g8h9i0jl
<FILE hash="1234567781212332321432" type="image/GIF" adult="0" description="Taj Mahal" creator="J.Smith"
file size="23023" />

<FILE hash="2122334214234324231423" type="video/AVI" adult="0" description="Elephants at the Taj" creator="F
file_size="1234567" oldhash="12345abcde"/>

</COLLECTION>

</COLLECTIONS>

The server should look for a record with matching userid and Collection Name, if the record exists it
should be updated, otherwise a new record is created and its fields set.

If the client has included a "hash" attribute of just "" then the Collection has been deleted. Delete
from the Collection table and all the relevant elements from "elements" table.

If the Client has included a "oldhash" attribute in the COLLECTION element, then this should be
checked against the "hash" field of the "collection" table.

o Ifit doesn't match, the server should respond with an HTTP 404 error, and the client should
resend a complete list with no "oldhash" value.

« Ifno "oldhash" attribute was supplied then this is a replacement, the server should query the
collelements table, delete any files that are no longer in the collection. Then, add any new ones
- and set their timestamp to now, and update the information (but not the timestamp) on any
files that remain in the collection.

¢ If a matching "oldhash" attribute was supplied, then this is an incremental update, then for each
file supplied:

o If there is a oldhash but hash="" then it is a delete, delete the element.

o Ifthere is a oldhash and hash value its a change, update the information, but not the
timestamp. Note that oldhash=hash is valid and means that the description was changed
but the file not changed.

o if there is a hash but no oldhash then add the file and set the timestamp



US 2002/0049760 A1 Apr. 25, 2002

129

The Server should then set the hash field in the collections table to the "hash" value.

The debugging version of the server can generate and check a new collection hash which is the XOR
of the MD?5 of the concatenation of the values from the fields sent with each file in a Collection. So
algorithmically ‘

Extract all the items related to the Collection from the COLLELEMENTS table

Extract the fields hash, type,adult,description,creator,file_size

Concatenate these fields and do an MD5 on them.

Starting with a hash of all 0 bits, XOR the MDS5 (bitwise, not character wise!) from each of the
items.

o Store the result in the Hash field of the Collection table.

Note, that if the operation was an incremental update, then the server can also check the Hash
generation, by only producing the hash on the new files, and XOR-ing it into the oldhash and
checking against hash,

The collections:size field should be maintained by this operation, i.e. incremented for every element
added, and decremented for every element removed.

If the message includes any files with copyright >1 - other than deleting them from 2 collection - then
a <COPYRIGHT/> message should be generated and the files not added to the table or into the MDS5,
but the operation should still succeed. Files with copyright = 1 may be added to a collection.

Otherwise, the server responds with a success code of 204.
<SUBSCRIPTIONS .../>
Subscriptions will not be implemented till Beta #1

The server should check the "livesubscriptions" table for users who are online currently and
subscribed to this collection, for each of them, an XML fragment can be generated.

<SUBSCRIPTIONS>

<COLLECTION name="India” description="My photos of India" private="0" oldhash="1a2b3c4d5" hash="e6£7g8h9i0j1
<FILE hash="1234567781212332321432" type="image/GIF" adult="0" description="Taj Mahal" creator="J.Smith" fil
<FILE hash="2122334214234324231423" type="video/AVI" adult="0" description="Elephants at the Taj" creator="F
</COLLECTION>

</SUBSCRIPTIONS>

This can be added to the next result returned to the client. Note that the "COLLECTION" element of
this should be the same for almost every user, and match the version received with
Upload_Collection, since alf users should already have the latest version. The exception will be users
who have not received any data since the previous update, so an array of recent updates to send might
be required. How this is passed efficiently from the thread receiving the collection to those handling
the users who need to be informed is left to the server developers.

| Search_Request

The server receives a GET containing paramaters for the search,



US 2002/0049760 A1l Apr. 25, 2002
130

GET /search_request?search_start=0&title=Taj&result_set=&type=image&online=1&adult=1
Host: server.applesoup.com
Accept-Lanuage: en, fr;q=0.5

The server should search the "elements” table, the exact match between the query and the search is to
be defined later, for now, a title of "Taj" should be matched against "Taj" appearing anywhere in the
title field.

Any file with copyright >0 should not be returned.

If type is specified, one or multiple times,then only files with that type ot type-prefix are returned,
type=club is used for file clubs. For example "type=image" would mean just to return images,
"type=club&type=video" would return videos and clubs but not images. If type is not specified then
everything is returned.

If online=1 is specified then only files which are online are returned.

If adult=1 is specified then only files with adult =1 then only files with adult <=1 should be returned
(i.e. those not specified as adult).

The search_start identified the number (starting with 0) of the first record to send in the resuit. Since
the client is likely to send subsequent requests for the remaining pages of results, the server should
cache the results of the search. Note that SEARCH_COUNT in the result is therefore one more than
the index of the last search result. The number of results returned in each response should be a
configurable parameter.

The result_set field contains the information to be returned, see Get_File_Info:Result_set=1 for its
interpretation.

The server should construct an XML document to return of the form, and return it with a success
status code of 200.

<7xml version="1.0" encoding="UTF-§"7?>

<IDOCTYPE AppleSoup SYSTEM "http://www.applesoup.com/support/applesoup.dtd">
<SEARCH_RESULTS search_start="0" search_end="50" search_count="75">

<FILE hash="1234567781212332321432" name="taj.gif" type="image/GIF" adult="0" creator="jsmith"
description="Taj Mahal"

file_size="23023"/ >

<FILE hash="2122334214234324231423" name="elephants.avi" type="video/AVI" adult="0" creator="mpatel"
description="Elephants at the Taj" file_size="1234567"/>

</SEARCH_RESULTS>

If there are no results to the Search, then an empty SEARCH_RESULTS is returned, with
search_start = search_end = search_count= 0.

Get_File_Info

The server will receive a simple GET.

GET /get_file_info?



US 2002/0049760 A1 Apr. 25, 2002

131

hash=1234567781212332321432&hash=122b3c4d5e6{7g8h9i0j Lk&collection=123&comment_start=10
&result_set=2

Host: server.applesoup.com

Accept-Language: en, fr;g=0.5

The server should look up the hash in the "files" table, If the result set includes comments, then it
should also look up comments from the "comments" table. If the hash is not found, then a 404 status
is returned. If the hash is found, then the server should return a 200 status, and an XML file
depending on the result_set.

The client can indicate which set of results are wanted, these will be documented below as they are
defined.

If the result_set includes comments and the comment_start paramater is present, it specifies where in
the list of comments to start sending results.

Any file with copyright >0 should not have any locations returned in the <FILES> section but should
have a copyright="x" attribute.

Result Sets

Result Set=1

All information from the Files table is returned, typically this occurs in a Search or Get_Collection.
Content-Type: text/xml
Content-Length: 123
<2?xml version="1.0" encoding="UTF-8%"2?>
<!DOCTYPE AppleSoup SYSTEM “http://www.applesoup.com/support/applescup.dtd">
<FILES>
<FILE hash="123456739012345678%012" <type="image/GIF" adult="0"
description="Taj Mahal” creator="J.Smith" file size="23023">
<FILE hash="1a2b3c" type="image/GIF* adult="0" description="Elephants" creator="mpatel” file size="1234S6">

</FILE>
</FILES>

Result_Sei=2

Returns just comments and location. It is significant that it does NOT return descriptions, since these
may vary for the appearance of a file in different collections.

Comments are presented according to an algorithm that might be changed later:

e First comments from the collection (as specified in the call) are listed in reverse DATETIME
order (newest first)

o Then comments not in any collection in DATETIME order

o Then comments from other collections. in DATETIME order

e Only the first 10 are returned.

The server returns Location information neccessary for the client to select a source, and do a
Get_File. Note that this is separated from the search results so that it can be done as late as possible,
to maximize the chance that the chosen location is still available. The Server should look in the
"userfiles" table for this hash and then do a join between the "userid" field of this table, and the
"users" table to locate the remaining fields.If there are no locations online then an empty



US 2002/0049760 A1 Apr. 25, 2002

132

<LOCATIONS> element is returned, with no <LOCATION> elements, at some point we will notify
users when a file requested becomes available.

Content-Type: text/xml
Content-Length: 123

<?xml version="1.0" encoding="UTF-8"%>

<!DOCTYPE AppleScup SYSTEM "http://www.applesoup.com/support/applesoup.dtd">
<FILES>

<FILE hash="1234567890123456789012">

<COMMENTS>

<COMMENT userid="jsmith" datetime="98765432" text="I like this shot, taken at sunset"/>
<COMMENT userid="mpatel" datetime="98765432" text="I wish he'd learn to focus"/>
</COMMENTS>

<LOCATIONS>

<LOCATION userid="jsmith" ip="12.34.56.67" port="5556" bandwidth="56000">
<LOCATION userid="mpatel" ip="23.45.67.80" port="5556" bandwidth="26000">
</TLOCATIONS

</FILE>

</FILES>

Get_User_Collections
The server receives a simple GET.

GET /get_user_collections?userid=jsmith
Host: server.applesoup.com
Accept-Lanuage: en, fr;q=0.5

It should look up the "userid" in the "usercollections" table (ignoring any records with "private ==
I"), and construct an XML file as follows, which should be returned with an HTTP success status of
200.

<?xml version="1.0" encoding="UTF-8"72>

<!DOCTYPE AppleSoup SYSTEM "htip://www.applesoup.com/support/applesoup.dtad”>
<COLLECTICONS>

<COLLECTION userid="jsmith" name="India" size="2" description="My pictures of India"/>
<COLLECTON userid="jsmith' name="Thailand" size="4" description="My pictures of Thailand"/>

</COLLECTIONS>

If the userid is not found, then a 404 is returned. If the user has no collections then an empty
COLLECTIONS element is returned.

Get_Collection
can use a Simple Get, such as:

GET /get_collection?userid=j.smith&name=india&result_set=1
Host: server.applesoup.com
Accept-Language: en, fr;q=0.5

The server should look up "userid" and "collection_name" in "collections” and "collelements” and
construct an XML file of the results which should be returned with an HTTP success code of 200.

<Txm] version="1.0" encoding="UTF-§8"2>

<IDOCTYPE AppleSoup SYSTEM "“http://www.applesoup.com/support/applesoup.did">

<COLLECTION userid="jsmith" name="India" size="2">

<FILE hash="1234567781212332321432" type="image/GIF" adult="0" description="Taj Maha!" file_size="23023"/>

<FILE hash="2122334214234324231423" type="video/AV!" adult="0" description="Elephants at the Taj" file_size="1234567"/>
</COLLECTION>



US 2002/0049760 A1 Apr. 25, 2002
133

Note that "result set" has the same meaning as for Get_File_Info and Search Request.

No files should be included who have copyright >0.

If the Collection is not recognized then a 404 is returned, if there are no files in the collection then an
empty COLLECTION document is returned.

Get_File

This is the tricky Client<->Client call, and will in the future be modified to work around firewalls etc.
The server has to handle this when the client is requesting a file associated with a Message.

This command is used to allow a client to obtain a file from another client. The Get command passes
the file requested by passing the hash of the file identifier. The server queries the database for all
known locations of the file on clients that are registered with AppleSoup. This, in effect, creates a
massive database of available files which is distributed across all the clients of the AppleSoup
network.

If the file is located at a connected location, AppleSoup automatically determines which location
should be presented to the client to establish a file transfer. This automatic selection is based on
various parameters such as number of files currently being transferred from the donating site, what
bandwidth exists on the both clients, etc. In the most general cases the transfer algorithm may select
more than one donating site with portions of the file coming from each of the donating sites.

If the transfer is disconnected by the donating client going off-line the client issues automatically
switches to another potential donating client so as to continue (without starting anew) the transfer
from that location.

It uses a simple GET.

GET /get_file?hash=1234567781212332321432
Accept-Lanuage: en, fr;q=0.5
User-Agent: AppleSoup/1.2.3456 PC

The result will be a standard HTTP response containing the file.

If the file is not available, or if the file is marked as copyright >0 whether or not deleted, or there is
some other problem then a HTTP error code 404 should be returned to the client.

Note that this call when done client <-> client is not Authenticated. At some point, this may be
changed.

Log Transfer

This is sent after the client has successfully complete a Client <-> Client Get_Info.

The server receives a Simple GET



US 2002/0049760 A1 Apr. 25, 2002

134

The server should store this along with the timestamp in the "transferlog" table.
The server should return an HTTP status code of 204.
Transfer_Failed

This is sent after the client has failed to complete a Client <-> Client Get_Info.
The server receives a Simple GET

GET /transfer_failed?hash=1234567781212332321432&ip=abcdef01&port=1234&reason=tcp_open_failed
Host: server.applesoup.com
Accept-Lanuage: en, fr;q=0.5

The server should store this along with the timestamp in the "transferfailure” table.

Other actions may be required as experience is gained, for example we may decide not to send out
this IP address if a number of tcp_open_fails are seen.

Note that the ip address is sent in hex, and port in decimal

For privacy reasons, in the future we will probably want to take action and then only keep statistical
information, not the hash AND ip.

Santosh:TODO: Supply list of possible error codes THEN tables to be built

The server should return an HTTP status code of 204.

Feedback

Do not implement this, we will use a standard HTML. form and handle the results with PHP or JSP.

This is sent by the client to provide suggestions - it is possible that this call will not be used, and
instead the client will launch the browser pointed at an HTML form.

This uses a Simple POST:

POST /feedback

Host: server.applesoup.com

Accept-Lanugage: en, fr;g=0.5

Content-Length: 54

Content-Type: application/x-www-form-urlencoded

text=Wow, $201%20really%201ike%20your$20service$0a%0dwhent20is$20the%20next$20release%20due$20out.



US 2002/0049760 A1l Apr. 25,2002

135

Note the URL encoding of the Spaces, and Carriage-Return Line-Feed inside the text
The server should store this in the "feedback" table, and return an HTTP status code of 204
Post_Comment

When a member wishes to post a comment on a media file, the client sends a message with the
following information:

The server receives a simple POST:

POST /post_comment

Host: server.applesoup.com

Accept-Lanugage: en, fr;g=0.5

Content-Length: 54

Content-Type: application/x~www—form-urlencoded

hash=1234567781212332321432¢text=1%2011ike%20this%20shot, $20takens20at320sunset&userid=jsnith&name=Ind

Note that useid refers to the owner of the collection, the userid of the poster comes from the
Authentication information.

If the file being commented on has copyright > 1then the comment should not be added and a

The server should append this information to the "comments" table.

The responds with an HTTP status code of 204.
Registration_Request

When AppleSoup is first installed, the new member undertakes a registration process. The is handled
by the following message:

The server receives a Simple POST:

POST /post_comment

Host: server.applesoup.com

Accept-~Lanquage: en, fr;g=0.5%

Content-Length: 54

Content-Type: application/z-www-form-urlencoded

userids=jsmith&password=alb2c3ddsemail=jsmith@nowhere.comesnotice=126connection speed=56k

The server should look up the userid in the "users” table.

The password is created by the client from the password entered by the user, MD5(userid
":applesoup.com:' password). This means that the plain-text password is never sent across the net
which is important because its probably used by the user on other web sites. This is the only time that
the hashed value is sent over teh net, and ideally this call should be hidden in the future by HTTPS.

If the userid is not in the table, then the server should add the record, and add the password hash, and
return a status code of 204,



US 2002/0049760 A1 Apr. 25, 2002

136

If the userid is in the table, AND this message is authenticated to come from that user, then the
registration information and hashed password is updated, and a status code 0f 204 returned. Note that
it is not possible for this request to change the userid.

If the userid is in the table, but this message is not authenticated from that user, then a status code of
400 should be returned with a string "NAME _FAIL".

Update_Subscriptions
Subscriptions will not be implemented until Beta-1

After logging on the Client can update its subscriptions. The Server receives an XML post

<?xnl version="1.Q0" encoding="UTFr-9"?>

<!DOCTYPE AppleSoup SYSTEM "http://www.applesoup.com/support/applesoup.dtd”>

<SUMMARY>

<COLLECTION userid="jsmith" name="India" description="My photos of India" private="0" hash="la2b3c4d5etf7g8h
<COLLECTION userid="mpatel"” name="Pets" description="My furry critters" private="0" hash="1la2b3c4d5¢6£7¢g8hoi
</SUMMARY>

this tells the Server the list of Collections that the client has subscribed to, the hash has been
generated using an algorithm that matches that in Upload Collection or it can be that sent by the
Server with the last update.

The server generates an XML document with the following algorithm.

o For each collection the user is subscribed to.
o If the hash != collection:hash
» For each record for this collection from the “elements" table.
= It should add the record to a XML fragment it is building that matches that
in Get Collection

a It should accumulate a hash using the same algorithm as in
Upload Collection

n If the accumulated hash matches the one specified in the "Summary” then
discard the XML fragment, and start afresh to accumulate it based on the
remaining records from collelements.

o Add the (possibly empty) XML fragment to the document being returned, if the hash had
matched then include the oldhash in the <COLLECTION> element, always include the
hash.

Return a status code of 200, and the XML document which should look like.

<?xm) version="1.0" encoding="UTF-8"7>

<!DOCTYPE AppleSoup SYSTEM "http://svww.applesoup.com/support/applesoup.dtd">

<COLLECTION userid="jsmith" name="India" size="2" hash="506p7q" description="My photos of India">

<FILE hosh="1234567781212332321432" type="image/GIF" adult="0" description="Taj Maha)" file_size="23023"/>

<FILE hash="2122334214234324231423" type="video/AVI" adult="0" description="Elephants at the Taj" file_size="1234567"/>
</COLLECTION>

<COLLECTION userid="ppatel" name="Taj Mahal" size="2" oldhash="6h7;8k91" hash="1a2b3c4d" description="A selection of Taj shots™>
<FILE hash="2122334214234324231423" type="video/AVI[" adult="0" description="Elephants at the Taj" file_size="1234567"/>
<fCOLLECTION>

<COLLECTION userid="mitra" name="Big Critters" size="2" oldhash="6h7j8k91" cldhash="3¢4d" hash="3c4d" description="Huge animals ['ve seen">
</COLLECTION>



US 2002/0049760 A1l Apr. 25, 2002

137

Note the three cases here, the first "India” is where no hash was found, for example a file might have
been deleted or its description changed, so a full listing is sent, in the middle case "Taj Mahal", only
files were added so an incremental version is sent, in the last case there are no changes.
Forgotten_Password

If a user forgets their password, they can request a reminder. The Server receives an simple GET.

GET /forgotten_passward?user=jsmith
Host: server.applesoup.com
Accept-Lanvage: en, fr;qg=0.5

The server shauld change the password to something new and reasonably memorable, specifically the
concatenation of two randomly chosen english words e.g. "palmrisk" this should be sent by email to
the main email address of the user (taken from the users table).

This message will be read from two strings in the servers configuration, exchanging \U and \P for the
userid and password.

When the user receives the message in their email, they can try again typing in the new password.
From Beta 0 they can also go to Tools Menu -> Change Password,

Note that there is no way for the server to determine the original password of the user since the server
only stores an encrypted version.

The server returns a success code of 204

It might be simpler to implement this in PHP or JSP so that the actual email message sent can be
generated from a template?

Messages
This group of commands handle messages
Validate_Email
This is a browser call, implemented in JSP. The server receives a GET for a URL like:
hitp://www.applesoup.com/validate_email?userid=jsmith&email=jsmith@foo.com&key=12345
The server should check that the key matches MD5(privatekey "' userid ' email)
o Ifit doesn't match - generate a 403 (or a 404 if that is difficult)
o [Ifit matches generate a page from a template, and set the validationflag on the appropriate field

in emailaddresses

Read_Message



US 2002/0049760 A1l Apr. 25,2002
138

This call is generally from a browser, not an AppleSoup client, and so will be un-authenticated, it will
be written in JSP on a seperate server.

The Server receives a Simple GET:

GET /read _message?id=12345skey=alb2ec3
Host: www.applesoup.con
Accept-Lanuage: en, fr;g=0.5

The id refers to the "rowid" in the "messageemail" table.

The key should match the random number created by Send_Mesasge, if it is not then a 403 error is
returned (you can't do this). (A 404 error is acceptable if it is not easy to generate 403 errors).

The server will generate a page from a JSP template. The template will presumably contain an
<IMG> tag containing the image, which may be served up by any convenient mechanism. The
template may contain other URLSs including ones for downloading the client, and for blocking spam.
Those URLs will be defined later. Beverly will supply this Template, after inital coding to a
dummy template.

Initially the actual image will initally be served up from a file area shared via NFS between the web
servers and the application servers. At some point after some research this will be moved to a more
efficient mechanism such as binary objects in MSQL. or via a seperate HTTP server with the
AppleSoup server posting the file to it, and the IMG tag pointing to it for a GET.

After generating this page, the messageemail item should have the time_received set to the current
date & time, and the count in "messages" decremented. See Periodic:Old Messages for what happens
when this reaches 0.

Send_Message
When a user wishes to send a file to other people, they fill in a screen.

The server receives a Simple POST:

POST /send_message

Host: server.applesoup.com

Accept-Language: en, fr;g=0.5

Content-Length: 54

Content-Type: application/x-www-form-urlencoded

to=jsmith@foo.comsto=mpatelato=mitra@earth.path.netssubject=Wowstext=Reminds%20me$0aof%2lhomeshash=alb2c3&na

If the message has copyright >0 then a <COPYRIGHT> element should be generated and retumed
with a 404.

The server should first check the "to" addresses without taking action on any of them.

+ any containing an "@" should be looked up in the "emailaddresses” table
o any that appear should be replaced by AppleSoup id's.



US 2002/0049760 A1l Apr. 25, 2002
139

o any that look like invalid email addresses are an error
o the rest are presumably AppleSoup id's and should be looked up in the "users” table.
o if it is not in the table this is an error
o In the case of any error, then the message should be abandoned, and HTTP error 404 should be
returned followed by an entity containing the XML:

<MESSAGE_FAILURE>
<UNKNCWN_RECIPIENT to="mpatel"/>
</MESSAGE_FARILURE

on success, the message is added to the "messages" table and the AppleSoup id's or email id, added to
the "messagelist" table and any email addresses added to the "messageemail” table, and added to, or

updated in, the "viralemail" table. "count" is set to the total number of recipients. Seed is set to a
random string.

An email message is generated for each user that is not an AppleSoup user, this should be read from a
template file, with simple substitutions of the fields from the message the message will include a
URL http://server.applesoup.com/read_message?id=123456&key=alb2c3 where the id is the rowid
from the messageemail table and the key is the random number from the same table. (Note to
developers, keep it simple, don't invent a whole template language).

............. AL A0 0000

An email is generated for each user that is an AppleSoup user, but has not been connected for some
(configurable) period. This should use a different template (which will invite the user to try
AppleSoup again). :

The Server should look to see if it already has this file stored because of a previous Send_Message, if
not, it should issue a Get_File to the client to fetch the file, and store it locally.

who don't pickup their messages.

Email_Address

The server receives this when a user wishes to change the list of email addresses supported by
AppleSoup. (See Client)

The Server receives an simple GET.

GET /email_address?add=jsmith@foo.comsdelete=jk@lm.no&pglrs.tu
Host: server.applesoup.com
Bccept-Lanuage: en, fr;g=0.5

If their are any add= parameters, then the server should send a verification message generated from a
template and containing:

http://www.applesoup.com/validate _email?userid=jsmith&email=jsmith@foo.comé&key=12345

where key is MDS5(privatekey '’ userid ' email) to each of them, and add them to the



US 2002/0049760 Al Apr. 25, 2002
140

"emailaddresses" table with validationflag=0.

if there are any delete= parameters, then the server should remove them from the list in
emailaddresses (provided that the userid matches). If any of the addresses removed matches
users:email, then the next validated email address should be made the primary email address. If there
are no validated email addresses (the client should not request this) then leave users:email unchanged.

The server should then generate and return an XML file with status code = 200.

<?xmi version="1.0" encoding="UTF-§"7>

<IDOCTYPE AppleSoup SYSTEM "http://www.applesoup.com/support/applesoup.dtd™>
<EMAILADDRESSES>

<EMAILADDRESS email="ab@cd.de">

<EMAILADDRESS email="jsmith@foo.com" validationflag="0">
<EMAILADDRESS>

Note that this shows which of the addresses have not yet been marked as validated.

Administer

The Administer functionality is used via a normal browser rather than an AppleSoup Client. It is to be
implemented in JSP (or PHP) and interact with the main server via the database. Some
synchronisation method will be needed between the administrator and the main servers.

Its is important, that however the design, the Server responds quickly to changes, for example if a
MessageOfTheDay is changed then it should be sent out in the next response to each client.

The Server should expect something like.

GET /administer
Host: server.applesoup.com
Accept-Lanuage: en, fr;q=0.5

It is essential that the server validates any administration transactions against a list of administrators.

In response to an authenticated GET as above, the Server should generate an HTML page from a
Template. This page should contain:

« Any alerts that administrators need to know about - these will be defined later as we gain
operational experience, but might include such things as a disk being filled above a certain
percentage.

« Forms for changing things that are frequently changed, in particular:

o Message of the Day
 Statistical Information extracted from the tables.

The exact specification for this functionality is left vague at the moment, it should be considered as
the single place for adding administration functionality. Commands that change things can be defined
in whatever way is convenient for the implementers, for example to change the Message of the Day,
the client might send another GET



US 2002/0049760 A1l Apr. 25,2002
141

GET /administer?messageofday="

Check%200ut%20the%20new%s20collections%20from%20award%20winning%?20photographer%20Joe%20Brown"
Host: server.applesoup.com

Accept-Language: en, fr;q=0.5

Please discuss any functionality being added here with this specifiation’s author (Mitra).

Periodic tasks

The server is expected to perform certain periodic tasks on a regular basis. Or as a result of certain
conditions.

At startup

At startup, the server needs to perform certain actions - there will certainly be others in addition to
this list.

o Check for cleaning up result of this server having previously crashed.

o Set any users from user table that have this server id as if they had logged off, i.e. set IP
address to 0 & set time_left to now. but note do NOT remove the userfiles or
livesubscriptions since the user may be in the process of logging back in on another
server.

o Note that a restarting thread should do the same thing but just for users of that thread.
User Cleanup

Users who disconnect do not have their entries removed immediately, in case the disconnection was
inadvertant, in which case there will be another connection. After a configurable period (~10mins),
users entries with an IP address of 0, and cached Authentication information should have the cached
Authentication information removed, and any entries for that user in the "userfiles" or
"livesubscriptions" tables removed.

Emails for old messages

When a message is left for an AppleSoup user, but not picked up for a configurable time (~48 hours)
then an email should be generated from a template, informing the user that they have waiting
messages and prompting them to use AppleSoup to fetch it.

Old Messages

Once a message has been seen by all recipients it should be deleted after a configurable amount of
time (1 day). This could be implemented by periodically sweeping through the messages table setting
anything with count=0 to count=-1 and deleting any where count=-1.

Any message older than 32 days (configurable) should be deleted.

When a message is deleted, if the file refered to is not refered to by any other message then it should
be deleted.



US 2002/0049760 A1 Apr. 25,2002
142

Database Design
General Considerations

All database accesses should be performed through functions that provide a layer which makes the
application code independent of the particular database that is used. It is possible that the database
might be migrated from MySQL to Sybase or Oracle at a later stage as the database grows in size.

MySQL does not support such concepts as referential integrity, or record locking. It is not intended
that we will ever rely on a database engine to provide such functionality. Similarly it is not intended
that we will ever rely on triggers or stored procedures for functionality. The design of code and the
data dictionary should be done with this in mind while at the same time keeping in mind the need for
scalability.

There will be a need for additional tables to support, as yet undefined, statistical data associated with
the applications.

this specification.



US 2002/0049760 A1l Apr. 25,2002
143

AppleSoup
Database Specification

(Company Confidential)
Updated: 4th May, 2000

Copyright AppieSoup Ltd., January 2000

Purpose

The purpose of this document is to provide a design specification
for the database structure as implemented in the AppleSoup
server. This specification is to be used by AppleSoup developers
as their guide in the preparation of the AppleSoup server and
client components. The alpha version of AppleSoup is intended to
have the functionality of the version 1.0 release, as presently
conceived, to the greatest extent possible. Achievement of the
design objective will permit a rapid move to the launch of
AppleSoup in mid-February.

It is the intention of this specification to define a protocol that will
enable enhancement of the client without significantly rewriting
the communications code, and to achieve that, it is fairly general
in places.

Nondisclosure

Use of this document and its contents and concepts is governed by a
Nondisclosure Agreement signed by CyberAge Communications (1) Pvt. Ltd.
(CyberAge).

Copyright and Intellectual Property

This document is the property of AppleSoup Ltd. All software code and
concepts designed under this project remain the intellectual property of
AppleSoup in accordance with the proposal from CyberAge.

Technical Control




US 2002/0049760 A1 Apr. 25, 2002
144

‘This design and the control of the software specifications are
being managed by:

Mitra, AppleSoup Chief Technology Officer.
<mitra@earth.path.net>

All questions relating to this specification document should go to
him.

Overview

The tables of the AppleSoup database can be considered to occur
in three groups.

1. Application Tables: providing the functionality of
AppleSoup

2. Log Tables: These accumulate information about what has
happened, they can be truncated without damage to the
application, although of course this should be done AFTER
the information is analysed.

3. Statistical tables: these will be used to monitor the use and
growth of AppleSoup. This set of tables might well change
a fair bit as we gain experience with the product. Generally
these tables will need a various cron type tasks defined so as
to populate them. This functionality is not critical to the
Alpha development of the product, but needs to be there for
launch,

It is critical that anything using these tables should assume that
they might change in the future, in particular all code that relates
to maximum size of strings should be configured from header
files so that the string lengths can afterwards be changed in only a
few places (e.g. Database creation routine where?, Server:
DBClasses.DBConstant and Client C++ config file where?)

Application Tables
Abbreviations
ldatetime ~_ Bignt20 [Holds a unix timestamp B

lUSERID ) ‘iCHAR40_ _ lLopg enqugh for a AppleSoup userid v
EMAIL __ |CHAR40 __|Long enough for any reasonable legal email address

HASH _ |CHAR22  [Holds a Base64 encoded MD5 value




US 2002/0049760 A1 Apr. 25, 2002
145

\IPPORT ___ |CHAR8 _[IPnumber and portexpressedinhex |
[FILENAME {CHAR40  [File name

The following database tables will be used in the design.
configuration

~ This is a table used to contain various configuration values used by the software. It has four columns:

Column Datatype |Description/Comments

rowid uint autoincrement

valuename CHAR2S5 {the name of the value in this row

value CHARRQ jthe value associated with the valuename
description CHARG64 |the description of the valuename

Specific Rows that are needed in this table shouid be documented here. Please email mitra if you add
any rows to this table.

| Example o e =
valwename ] valwe | 2 DeerPm
DBVERSION§ 1 Version number of database, increment each time a field is
............... .. |sdded/deleted to ANY table e
SWMINVER 1 220 Minimum version number of server that this database is compatable

g with.

[Note that the server version number and minimum version of
oAl |databascare compiledintotheserver

size 181 bytes per entry
users

This table contains the list of AppleSoup registered users. An entry is made in this table when a new
user registers to use AppleSoup. On subsequent logins and logoffs the online column and location
columns are updated. A process needs to run from time to time to update the table for disconnected
users who did not logoff.

Column Datatype {Description/Comments
rowid juint autoincrement
userid USERID juser's login id

HashedPassword: The value MDS5( userid "' realm "’ passwoi‘d)-; note t
the same information as generated by /usr/sbin/htdigest as supplied wit

connection_speed {CHAR10 |from initial registration

password HASH

online _ uint 1 if on-line, 0 otherwise

time_created {datetime |Unix timestamp when they registered



US 2002/0049760 A1l Apr. 25,2002

146
location IPPORT {IP Number and port expressed in hex
authenticate CHAR150]Cached Authentication response
email EMAIL |{Email address of user
port uint port to contact the client on
server uint index into servers table of the server handling this user
thread uint thread number (or other identifier) on that server.
notice uint frequency in days requested for notification
time_left datetime {Unix timestamp of when disconnected, set to 0 during session or after

Total Size 370 bytes per user
emailaddresses

This table contains the email addresses that a user has. When a user registers, one email address is
added to this table. Subsequently (as a "preferences’ capability on the client) the user can add
additional e-mail addresses. This requires a suitable message package and a server processing of
same. When AppleSoup is installed, a validation code is generated and passed to the client. To
receive messages, the member must validate by entering this code. When that is done the
validationflag is set to 1

Column Datatype Description/Comments

rowid uint autoincrement

userid USERID {user's login id

validationflag CHARI1 {0 when AppleSoup installed, | when member has validated their email
email EMAIL {Email address of user

validationcode CHAR10{Used during validation process

Total size 101 bytes per email address
userfiles

This table contains the media files that are currently available on the AppleSoup network, identified
by users that have them. when you log in your index is uploaded into this table; on log off your
entries are purged. If a user attempts to access a file that is no longer connected, an error is generated

Column Datatype|Description/Comments

rowid uint  |autoincrement

hash HASH  hash value of the media file
userid USERID {user name of user having this file

time_entered_online{datetime {connect timestamp

connection_speed |CHARS {from users file




US 2002/0049760 A1 Apr. 25, 2002

147

Total Size 97 bytes per file online
files

This is the table of AppleSoup media files. Whenever a new file hash is loaded in an index, a row is
added to this table.

Column DatatypeiDescription/Comments

rowid uint autoincrement

hash HASH  }hash value of the media file

mimetype CHAR?20 iimage/jpeg, image/gif, etc.

adult CHARI iflag 2 = adult 1 = unmarked, 0 = family friendly
copyright CHAR! iflag 0= OK 1 = suspended 2 = copyright 3 = illegal
filesize uint in bytes

thumb HASH  |hash value of the media file's thumbnail, if any
notransfers uint the number of transfers of the media file
lasttransfer datetime |{timestamp of most recent transfer

private CHAR! |1 =by invitation, only , 0 = public

creator USERID |The creator of this file where known

online uint count of number of copies of this file online at the moment

Total size = 167 bytes
comments

This table contains comments contributed by viewers on media files.

Column Datatype |Description/Comments

rowid uint autoincrement

hash HASH  {hash value of the media file

timestamp datetime |timestamp when loaded

comments CHAR255 |the comment entered by the member
userid USERID |username from login of the commentator
collectionid uint optional -- only if in collection
Total size 357

collections

This table is a list of media collections (file clubs), identified by owner. This is one of the tables that
is searched when a search query is processed. This table is searched first and if the max number of



US 2002/0049760 A1l

Apr. 25, 2002

148

hits is not achieved, then the elements table is searched

Column Datatype |Description/Comments

rowid uint autoincrement

userid USERID username from login

name CHARG60 |file club name

description CHAR?255 |description of file club

private CHAR! |flag 1 = by invitation, only , 0 = public
timestamp datetime |timestamp when loaded

hash HASH A hash of the values sent with the last Upload_Collection
size uint Count of elements for this collection
imagecount uint Number of images in the collection
videocount uint Number of videos in the collection

Total Size 438 per collection

elements

This table contains the descriptions for a media file as added by various file club owners of that
image. This is one of the tables that is searched when a search query is processed.

Column Datatype |Description/Comments

rowid uint autoincrement

collectionid uint rowid in collection table

filename FILENAME|name of file as it appears in this collection
time_added datetime  {time at which the fileclub element was added
hash HASH hash value of the media file

description CHARZ255 |{file club owner's description of media file
messages

this table stores messages that are being sent to a friend. the number column is decremented when a
message is sent. When it zero the message is deleted. A message is added to this table if it can not be
delivered at the time the server processes it. Messages to e-mail addresses will be sent automatically
by the server so this only applies to messages to AppleSoup users that are not logged on at the time
the message is sent to the server. A purge routine should remove messages after some period of time.



US 2002/0049760 A1

Apr. 25, 2002

149
Column Datatype {Description/Comments
rowid uint autoincrement
username USERID  juser's login id of message sender
sendio CHAR2S55 {list of recipients (applesoup and email) in text form
subject CHARS0 |subject string sent from client
messagestring CHAR255 |message string sent from client
time_added datetime  {time at which the message was added to the table
hash HASH hash value of the media file being referenced in the message
number int the number of messages remaining to be sent
name FILENAME/the name of the file
collectionid uint optional - if there is an identifyable collection associated with this me

Total size 733 bytes per message

messageemail

Column Datatype Description/Comments

rowid uint autoincrement _ _

messagenumber  {uint the rowid of the message in the messagetoafriend table

to EMAIL |email address of this recipient

time Teceived datetime tll’ne at which message (not the email message, the web page) read by t
= initially set to 0

key CHARIQ {initialized to a random value when the record created

Total size 90 bytes

messagelist

the list of addressees for a message. When a user logs on a search is done of this table and those
messages that appear are delivered. The corresponding rows on this table are deleted and the counts
in the messageforafriend table are decremented. (NB this requires a message structure to exist on the
client to store such messages until they are viewed

Column Datatype|Description/Comments

rowid uint autoincrement

messagenumber  {uint the rowid of the message in the messagetoafriend table

userid USERID {userid of the AppleSoup user that the message is for

|reminded {datetime When a reminder was sent via email (typically 48 hours after msg send




US 2002/0049760 A1l Apr. 25,2002
150

Total size 80 bytes

searchquery

this table logs all queries that are used in searches of the file descriptions. The maximum number that
can be returned is a system parameter of the server.

Column Datatype|Description/Comments

rowid uint autoincrement

querystring CHARGSO0 iquery string sent from client -- length to match data transferred
number uint the number of results from the query

feedback

This table contains answers from responses to forms - a set of answers from a single form or set of
forms is grouped by a response_id. The table is filled by the JSP code behind pages like
feedback.htm, question_id comes from the NAME field of a form, and answer is the result (URL
encoded). Note that the forms may include hidden fields set by parameters in the URL, such as for
example the user's applesoup id.

Column Datatype {Description/Comments

rowid uint autoincrement

time_added datetime |time at which the transfer took place _
response id HASH same for all queries during same session with web server
question_id CHARA40 iid given in <QUESTION ID attribute

answer CHAR255 |answer as entered by the user.

Total size 347 bytes

language

contains multilingual strings for use by the server, the server will look for the "English version of
string 10"

Column Datatype iDescription/Comments

rowid uint autoincrement

stringid CHAR20 {amessage id _

language CHAR20 ‘llan%uag"e of stnf'lg as specified in rfc1 766 which refers to ISO639 an
en" or "en_US

text CHAR255itext of string in UTF8

Total size 305 bytes

Specific Strings are:



US 2002/0049760 A1l

stringid Usage

| Message of the Day

viralemail

Apr. 25, 2002
151

This table lists each email address that is used in the messaging system. The first time the email
address appears a new row with that address is added with the inittime & recenttime time stamps
being set, and regtime being null and the dontsendflag being set to 0 and count to 1. Each time a
subsequent mail is sent to this same address, the recenttime datetime stamp is set with that time and
count incremented. If the address is registered as an AppleSoup user, the regtime timestamp is set. If
mail to this address bounces back for invalid address, the dontsendflag is set to 1 and a message sent
to the sender. If the recipient sends a don't send message the dontsendflag is set to 1. (note: may want
to refine this so that more than one not delivered is required before it is removed.

Mitra:ToDo ~ add this functionality above to Server spec

Column Datatype {Description/Comments

rowid vint autoincrement 4

emailaddress EMAIL {the email address to which the message is sent ‘
dontsendflag CHARI ?nijacl)il:iay to send mail to this address (default), 1 if recipient declines
inittime datetime itime at which first email was sent to this address

recenttime datetime {time at which the most recent email was sent to this address

regtime datetime |time at which the reciepient registered a copy of AppleSoup

count uint incremented each time a message is sent

Total size 121 bytes

livesubscriptions

contains a list of which currently online users are subscribed to which collections.These entries are

removed on logoff.

Column DatatypeiDescription/Comments

rowid uint autoincrement »

userid USERID {userid of subscriber

owner USERID |userid of owner of collection (as in collections:uéerid)
name CHAR40 name of collection

hash HASH  |hash of last version seen by user.

Total size 152 bytes per subscription



US 2002/0049760 A1 Apr. 25, 2002
152

servers

contains any information that needs to be kept across servers. Note that the rowid is used as an index
in other tables. This table will be expanded to hold any information that needs to be accessable across
different servers, for example to an administration program.

Column DatatypejDescription/Comments
rowid uint autoincrement

P IPPORT iip address and port in hex
Log Tables

transferlog

This table is the list of successful transfers. Note that userid is NOT recorded.

Column Datatype|Description/Comments

rowid uint autoincrement _

time_added datetime |time at which the transfer took place

hash {HASH  thash value of the media file

demographics lf;ields vxfill be added here to record demog.raph‘ics to be specified by cat
¢ obtained from the users table, but userid will not be recorded

Total size 52 bytes
searchlog

This table logs searches. Note that userid is NOT recorded.

Column Datatype|Description/Comments

rowid uint autoincrement

time_added datetime |time at which the search took place
term CHARS0 N

number_resuits uint number of results returned

Total size 120 bytes
transferfailurelog

This table logs transfer failures. Note that userid is NOT recorded.



US 2002/0049760 A1l Apr. 25, 2002

153
Column Datatype | Description/Comments
rowid uint autoincrement
timestamp datetime {time at which the search took place
hash HASH ihash of file that was being transfered
ip IPPORT {IP number and port (from user's table) that was being contacted
reason CHARA4O {reason for failure - this may have internal structure to be defined.

Total size 100 bytes

Statistical Tables

The following tables are used to monitor various aspects of the usage of the database. They are

generally populated with snapshot data which are recovered by processes that are spawned by a
scheduled (e.g. cron) process.

See inprocess.htm for changes to this
logonsession

a record of the logon sessions

Column Datatype Description/Comments
rowid uint

userid USERID |userid

logon timestamp datetime {the time at which logon occured
logoff timestamp datetime {time at which the logoff occured
Total size 90 bytes

numberofdownloads

gives the number of downloads to that time. This is a process that goes to the download site(s) and
registers the count at those sites at the time

Column Datatype{Description/Comments

rowid uint autoincrement

value uint the count

site CHARI10 {the download site

timestamp datetime |time at which the count was taken

total size 50 bytes



US 2002/0049760 A1l

counters

Apr. 25, 2002
154

This is a generic table for counting something for statistical purposes.

Column Datatype|Description/Comments

rowid uint autoincrement

id CHAR20{anid

count uint the count

timestamp datetime |time at which the count was taken _

description CHARBO | Description of the counter - e.g. who is using it, or what it is counting

Total size 140 bytes

This table is used to record an incrementing, or periodic count. A process wishing to increment the
count for id=foo would increment the count for the record with id=foo and timestamp=0 (or null or
whatever). Alternatively a process just wishing to record a count can create a new record with a
specified id and current titnestamp.

Periodically - and this might vary based on id - the server will set the counts, and create new records

with timestamp=0.

Consistency Checks

The following consistency checks can be applied periodically to check the integrity of the database.

o All of {livesubscriptions:userid, livesubscriptions:owner, etc} exists in users:userid
o Foreach collection in collections { collection:size = count(elements: elements:collectionid =
collection:rowid) }



US 2002/0049760 A1l
155

AppleSoup

Client - Specification

Apr. 25, 2002

(Company Confidential)

Last updated: 20th April, 2000 by Mitra

© Copyright AppleSoup Ltd., January 2000

[Purpose

This document is undergoing a Ul revision - it should be close
enough to being stable for implementation of the new Ul to
start.

The purpose of this document is to provide a design specification
for the client portion of the alpha release of AppleSoup. This
specification is to be used by AppleSoup developers as their guide
in the preparation of the AppleSoup client component.

The alpha version of AppleSoup is intended to have the
functionality of the version 1.0 release, as presently conceived, to
the greatest extent possible. Achievement of the design objective
will permit a rapid move to the launch of AppleSoup.

This is one of several specification documents which detail the
design of the AppleSoup application. This document will refer to
other documents in this specification series and they should be read
in conjunction with this document to obtain a complete view of the
current design concept.

The reader of this document should also be familiar with the
general overview of the AppleSoup Product.

Note: We intend that we will have beta versions of the AppleSoup
client running for Mac Linux clients.

Specification process ToDo and Next steps

Contents

Back to AppleSoup
Specifications Index

Nondisclosure

» Copyright and

[ntellectual Property
Technical Control
Overview
TimeLine

Design Philosophy
Implementation
Priorities

Client Technology

Multilingual Capabilities

e Interface

o Stattup
Functionality

[o]

Colors

File Club Info
Panel

Panels - common |

Registration Panel |




US 2002/0049760 A1l Apr. 25, 2002

156
o Add Local Files
Panel
+ Pass through doc and handle TODO items o File Info Panel
« Put protocol stuff into actions e.g. Get File Info etc _ o New File Club
o THEN: Check that all error cases from server are Panel
handled. o Vi anel

e Spec items from version_information documen Media File

s File Clashes

Nondisclosure s Comments
o Send to a Friend
Use of this document and its contents and concepts is governed by a o Inbox Panel
Nondisclosure Agreement signed by CyberAge Communications (1) Pvt. Ltd. T 1T T ;
(CyberAge) o Help Us Panel i
o Search Interface
Copyright and Intellectual Property o Web Grabber
Panel
This document is the property of AppleSoup Ltd. All software code and concepts o Copyright Dialog
designed under this project remain the intellectual property of AppleSoup in o Full Screen Mode
accordance with the proposal from CyberAge. o Windows

Integration
o System Tray
o File and Data storage

Technical Contrel

i
This design and the control of the software specifications are being Structures
managed by: e ActiveX Controls
Mitra, AppleSoup Chief Technology Officer. o Control Selection
<mitra@earth.path.net> Criteria _
o Controls Needed |
All questions relating to this specification document should go to o Objects
him. o Communications
Protocol |
Overview o Get File |
o Install Script Features
For an overview of the AppleSoup product see the file
overview.htm

TimeLine
This specification is on a fast-track, the tentative dates we are aiming for are:

Well before April Internal Beta with all "Must-Have" features, source trees are split so that from

{5th this point on we always have a stable Beta.

April 15th Beta-0, with all complete/stable feature sets (timing chosen to be before US
students break for summer).

May 15th Launch of Beta 0

ASAP Additional Beta versions B1..B4 launched, fixing critical bugs and adding new

feature sets



US 2002/0049760 A1l Apr. 25,2002
157

Full launch - but marketing to pick date based on competitors, stability and

ASAP feature sets included.

The set of features for each version are listed in version_information.htm.

If any feature of the specification makes it hard to make this date, then CyberAge are encouraged to
contact AppleSoup (Mitra) to discuss changing it.

Design Philosophy
General Design Characteristics:
We are looking for simple, working code which has the following characteristics:

» Easy extensibility; any currently defined functionality is a subset of the anticipated
functionality for the first version release.

» Common look and feel; the screen interface should use a common approach to all user
interaction.

« A simple interface which does not have a lot of pop-up windows; emulating simple web-style
interfaces.

s We are looking for ease of use, from installation through application.

» The code must be easily maintainable.

» button elements, forms, not lots of graphics

Implementation Priorities
An important part of the alpha project is to demonstrate that:

1. Each of the technical concepts involved in the design will work, and
2. When linked together as a product, the various pieces work as a whole

The set of functions to be included in the Alpha version is documented in the Version Information
document.

Client Technology Architecture

1. The alpha client application will be written in MS Visual C++, version 6.0. We intend that, to
the greatest extent possible, the client should be written using standard features of this tool.
Deviations from standard features will be evaluated on a case by case basis, as they appear, by
AppleSoup technical staff.

2. The alpha client application will be written to run on the MS Windows 9x operating system. It
is intended that the AppleSoup installation process should be a simple as possible and should
not adversely impact the functioning of other applications or the operating system. It is
anticipated that registry values will be defined and utilized. Any .dIl’s that are required need to
be defined at an early stage and approved by AppleSoup technical staff.

3. We plan to have Mac and Linux versions for the beta version of the AppleSoup client.

4. The ideal target size for the completed, fully functional (version 1.0) product is less than
IMB .EXE installation file, ideally more like 500K B. This alpha version of the client should



US 2002/0049760 Al Apr. 25,2002
158

~

have substantially the functionality of the version 1.0 release. We intend to use third party
controls for presenting media files as appropriate to speed development time.

5. The connection protocol for the client to the server is defined in the Communications Protocol
Document and should be read in conjunction with the Server specification.

Multilingual Capabilities

The AppleSoup application is a tool that can be used by members from a wide variety of languages
and cultures. When a potential AppleSoup meniber visits the AppleSoup website they will be able to

select a language of their choice and then be presented with the option to download AppleSoup in
that language.

To ensure that this functionality is available, the alpha version of the software will support at least
two languages. One of these should be American English. The other can be some second langnage
that is easily available to the developer (e.g., one of the languages, other than English, of India). The
text for a Korean version will be supplied to the developer by AppleSoup Ltd.

We should use standard MS VC++ techniques for creating multilingual applications right from the
beginning of the alpha development.

To support more than one language, there needs to be appropriate change in the Ul in button controls
as they should be sized such that the text in different languages can be supported. R&D needs to be
done for this, and width of the buttons needs to be changed depending on the text to be displayed on
the buttons.

For design purposes, we need to look at different ways of how multilingual support can be achieved.
Either there needs to be different exes for different languages, which is a straight forward solution or
there needs to be support for having two languages in one exe. How to support multiple languages in
one exe and whether it is possible stills needs to be figured out.

It is neccessary that whatever the language chosen for the Ul that the client can display messages that
are written in another language. For this reason UTF8 will be used for all strings passed through the
protocol, and the client should support displaying these strings subject only to the neccessary
resources (e.g. Korean fonts) being available on the client.

The design of the Ul for the installer will depend on whether there is one installer for multiple
languages or one installer per language.

Actual translation in different languages needs to be done for which the translators will be
outsourced.

Interface

The section below defines the Ul for the Alpha, note that Screen Shots refer to the current version,
and so will not neccessarily match the text.

Startup Functionality



US 2002/0049760 A1l Apr. 25,2002
159

After installation of AppleSoup, it will have a small icon in the system tray from where the
AppleSoup application can be initiated. The way it works in different modes is described below.

o OFFLINE MODE (this is where AppleSoup starts).
o If the user has never logged in before, then if the UI is open, then open the Login Panel,
do not move out of this mode until a userid and password are available.
o If "explicit_disconnect" is not set, then when net connection becomes available, go to
CONNECTING MODE
o When user hits connect or selects from systray menu
= Dial internet connection if this is how the user's dialup connection preferences are
set
n If this fails
» If Ul is open show error message
= Stay in Offline Mode
» If it succeeds go to CONNECTING mode
« CONNECTING MODE
o Connect to Server
n [fthis fails
» If Ul is open show error message
= Wait and try again
= If it succeeds, Go to ONLINE MODE
+ ONLINE MODE
o Obtain the userid/password from the registry, and send a Login request.
o When user hits disconnect or selects from systray menu
s Hang up internet connection if this is how the user's dialup connection preferences
are set
s Go to OFFLINE MODE with "explicit_disconnect” flag set
o When connection to server is lost
» IfUlis open, show error message
= Go to OFFLINE MODE

Panels - common functionality

© AppleSoup

The
AppleSoup
client is
organized
as a series
of Panels, %
accessed by ;
a button
bar.

%5

Navigation between panels occurs in one of two ways, either a user clicks on an item, for example a
File on the File Clubs panel. In this case the appropriate panel opens to view the selected item.
Alternatively the user can click on one of the buttons in the button bar. In this case the panel opens
with the previously viewed contents.



US 2002/0049760 Al

160

Clicking on the Panel Graphic does nothing.

Feedback goes to a predefined URL.

There is a status bar at the bottom which shows Connected or Disconnected, and may give other
information about network activity.

Menus
The window also contains a menu bar organized as follows.

Window Controls

o il Brings up the usual menu for all applications.

e X: Closes the Ul, but minimizes as icon in the System Tray, leaving the server connection
open.

» _: Does exactly the same thing

o Full Screen: Does what you would expect in Windows

FileClub Menu

o New File Club - brings up the New File Club dialog

e Beta-2: Page Setup: Brings up the Page Setup dialog (what do we need to specify here, is
this standard?)

o Beta-2: Print: Brings up a standard print dialog, at the moment I don't know of any

AppleSoup specific stuff to go here.

Disconnect (or Connect): Causes the client to drop the connection to the server or to Open it.

File Club Info - brings up File Club Info Panel, should be greyed out when nothing selected

File Info - brings up File Info Panel, should be greyed out when nothing selected

Minimize and Exit need thought (Mitra)

Exit: Causes the client panel to close, but leaves the connection to the server open in order to

serve files, AppleSoup should minimize as an icon in the System Tray.

Tools Menu

o Future: View Full Screen: Displays the Full Screen Mode
¢ Delete File - deletes the selected file from the collection, should be greyed out when no
file selected.
¢ Delete Club - deletes the collection - this can mean deleting your own collection from a
hard disk, or deleting a subscribed to or clicked-on collection, In the latter two cases, the
files in the collection should be deleted from the Downloads directory unless they are in
another collection.
e From Beta: Change Password: This brings up the Change Password Dialog
o This panel asks for user name, old password and new password twice - it has a
button to submit and another for "I've forgotten my password™.
o If "I've forgotten my password" is clicked then it should work the same way as on

Apr. 25, 2002



US 2002/0049760 A1l Apr. 25,2002
161

the Login panel.
o When submit is clicked, the two new passwords are compared, and if they match
sent to the server in a Registration_Request.

s From Beta:3: Settings (or Preferences on the Mac): The options menu item will bring up
a an options panel where people can set various options for the application. Options to
be set include: Mitra TODO: finish this list and spec panel

o automatic download size - the maximum size of a file that should be automatically
downloaded when the View panel is looking at, or about to logk at, it.
o advanced features (including Search check-boxes)

¢ From Beta 3: Email Addresses:

o This sends a command Email_Address to the server, and lists the email addresses
in a dialog box or panel which has:

m A line or two of text saying "This allows you to register extra email
addresses for yourself. These addresses are used to filter out messages from
other AppleSoup users so that you receive them inside AppleSoup rather
than via email netification and a browser."

= A list of existing email addresses - with:

» some kind of control (check box?) to delete them, the client should not
allow the last validated email address to be removed.

s Email addresses which have not yet been validated should be shown
differently and if there are any then an explanation given.

s And a box labelled Add in which to enter any additional email address

= And a button "Update" which when clicked performs minor checks for a
add=foo@bar.com&delete=js@bc.de&delete=kl@mn.op message to the
server.

s The client will then recieve back a new list of addresses and can update the
display.

Help Menu

« AppleSoup home: Open the browser at: http://www.applesoup.com/home.htm
o AppleSoup Help: Open the browser at: http://www.applesoup.com/help.htm?
userid=xxx&panel=yyy
o send as much information as the client has in order to make it easier to give help.
¢ Feedback: Opens the browser at http://www.applesoup.com/help.htm?
userid=xxx&panel=yyy
o send the same information as for "Help".
o Privacy Policy: Opens the browser at http://www.applesoup.com/privacy.htm
s About AppleSoup: Displays the AppleScup version (build) number and logo

If it is not possible to connect to the AppleSoup server the client opens in a local mode without
such connection. The mode (connected or local or connecting) is shown in the Status bar.

Colors
The screen shots below may not show the correct colors yet, colors should be.

¢ panel color R221 G221 B221



US 2002/0049760 Al Apr. 25,2002
162

panel highlight R255 G255 B255

panel bevel shadow R153 G153 B153 and RO GO BO

panel "inside" areas like for the menu tree and thumbnail area R191 G191 B191
item highlight color R119 G119 B119

window bar R170 G170 B170

Registration Panel

This screen
appears when |:
4 user starts
up the
AppleSoup
client for the |it ¢
first time.The |
AppleSoup
client checks
to see if the
computer
already has a
user
configured. If |
not it prompts |’
with the
registration
panel.

Registiation

o

The panel
contains a
button - "I am
an existing
user”, which
goes to the Login panel.

The connection speed is from a list of values which are hard coded into the install script. The values
are: "Not Known",14.4 modem, 28.8 modem, 33.6 modem, 56k modem, 56k ISDN, 128K ISDN,
Cable, DSL, T1, T3 or more.

The mail-frequency radio-boxes allow the user to choose how often to get updates from AppleSoup.
When the "Register AppleSoup" button is pressed.

o Checks are made, specifically.
o If the password and the re-enter password are not the same a MessageBox appears and
they have to reenter.
o If the Email address looks strange (doesn't match the regexp [-a-zA-Z0-9_.]+@/[a-
zZA-Z0-9]+.([a-zA-Z0-9]+.)+ ) then the user is prompted to reenter.
o The userid is lowercased, if it doesn't match [-@.a-zA-Z0-9]+ then it is rejected.
s Otherwise the data is sent to the server in a Registration Request.



US 2002/0049760 Al Apr. 25,2002
163

o If this request fails.
u If the string reason is "NAME_FAIL" then a dialog box is presented saying "This
username is already in use, please select another one"
o If this request succeeds the Login dialog is opened

Login Screen

Logon I ] This screen is reached when a registered
B : ” user opens the AppleSoup Ul (it doesn't
appear if AppleSoup is started in the
systray), or when a user hits "I'm already
registered" from the Registration screen.

Change from screen shot:

| "New User™" goes to the Registration
screen

The user enters their AppleSoup id and
password and hits "Login". This
information is passed to the server for
AppleSoup user then they can enter the

authentication. If the server authe;mcates the user {o be an
AppleSoup client and are shown the FileCiubs panel.

As the interaction proceeds with the server it is indicated in the upper panel replacing Sign Up"

If they enter the wrong password, they will be prompted one or more times to get it right, the string
for this will be supplied by the server. .

If they have forgotten their password they can hit the "Forgot Password" button, in which
case the client will send "Forgot_Password" to the server, which will email the password at
their email address. The client should put up a dialog box to say this is being done before
exiting.

FileClubs Panel

The File
Clubs Panel
appears
when:

e after
the
user
logs
in,




US 2002/0049760 Al Apr. 25,2002
164

Features row.

¢ if 2 member's name is clicked on from any of several places it might be listed (e.g. search
results).
« when the Search button is clicked and a search starts

This panel is the main interface panel. It shows a list of file clubs and information about the contents
of one club.

Changes from what is shown

e Add a More button to the right of Info, with space for text ""xxx results shown of yyy"
o It should be "My File Clubs" not "My Collections"
o "Add File(s)" should be "Add Local File(s)"

Above the Bar on the Left is shown the name of the Collection being viewed, and above the Bar on
the Right is shown the description of that club

From Beta 3: Below the Bar on the Right is a checkbox to switch between List and Thumbnail
modes.

Left Hand Side - Explorer Bar
The Explorer Bar is 2D scrollable, and contains the following top level items.

. ﬁMy Clubs: This contains one Folder for each FileClub the user manages i.e. those on the
user's disk.

. %Subscn’bed: This contains one Folder for each FileClub the user is subscribed to.

o $&Not Subscribed: This contains one Folder for each FileClub the user is not subscribed to, this
persists only for the current session. Open question - I think this is not needed, omit for
now.

o & Search Results: This, and the sub-items are shown with a magnifying glass icon. It contains
one sub-item for each search listed by the search term used. Each sub-item contains one Folder



US 2002/0049760 Al Apr. 25,2002

165

for each Collection returned in the search.
1

. %Note new icon: Web Grabs: Contains one Folder for each URL that has been Web-
Grabbed, listed by the URL.

. ﬁOther users. Contains one Folder for each user that has been clicked on. Each of these
Folders contains a list of that user's collections.
There is the following functionality.

o When a file club folder is selected, the club is shown in the Right-Hand-Side

e From Beta 1: Below the explorer bar is a check box, which shows if the club is subscribed to

or not, if it is changed the Client should subscribe/unsubscribe to the club.
e Right Clicking should bring up a menu of things that can be done to a Collection -

specifically.
o Info brings up the File Club Info Panel
o Delete - deletes the entire collection
o Add Local Files - adds files to a collection (disabled if it is not the user's collection)
o Fetch All - downloads all files in the collection (disabled if it is the user's collection,
or they are all downloaded already)
o There may be more items here later.
s Below this, a button to create a new File Club - this brings up the New File Club panel

Right Hand
Side - File
List Mode

This
displays the
details of
files present
in that file
club, it
shows a list
of the files
in the club,
along with
information
about the
file, this
information
should be
:{the Name,
Owner,
Type,
Description,
Local, Size

and Date

24 added. Type

is indicated



US 2002/0049760 Al Apr. 25,2002
166

by an icon
The headings should be sortable and resizable and the whole component scrolls in 2D

If possible (otherwise defer to a later version) the description should be clickable and then
editable,

Right Hand Side - Thumbnail mode
In Thumbnail mode (shown above),

it shows thumnails from the collection,

with one line giving their description,

¢ and a second line giving the abbreviated type, and whether local or not, and the size (not
shown above)

o When a file is clicked its background changes color

User Interface- either Mode

o Ifthe user selects a file, in either mode, and clicks on it, the View panel opens up displaying
the selected file
o If a user right-clicks on a file, they should get 2 menu containing:

o Info - brings up the File Info Panel.

o Delete - deletes the file from the collection, disabled unless its the user's fileclub.

o There is a button which shows "Add Local File(s)" for a local collection and "Fetch All"
for a Search or someone else's collection.

o "Add Local File(s)", which will bring up the Add Local Files panel which allows a
selection of multiple files from the user's hard disk. Note that the same rules for
adding files that clash apply as defined in View Panel.

o "Fetch AIl" , causes all the files to be downloaded.

o If this is a search there is a button "More" which will fetch more search results if there
are any (it should be disabled if there are no more results).
o If the user clicks on "Info" then the File Info Panel is opened for the selected file.

Search Interface

The Search Interface consists of a text box, and - if expert search is turned on in Preferences - a series
of check boxes. The user can enter text into the box and hit return or click Search. In this case a
Search_Request is sent to the server, and the File Clubs panel opens with a new Search item added.

The search lists the various media files that match the search criteria. (What exactly it means to match
a query is something that we will research). The search will be limited to find the first N results (N is
a parameter in the server environment).

If a search is repeated, it should replace the existing entry.

The search is shown as a sub-item of Search named by the search term used. Each sub-item contains
one Folder for each Collection returned in the search, these are also shown on the right-hand-side.



US 2002/0049760 Al Apr. 25,2002
167

The search results should be shown on the right-hand-side, even if there are no results, i.e. an empty
list.

If there are no results, then the search should be tried again with spaces removed - ¢.g. a search for
"South Park" that returns 0 results should be repeated for "southpark”

If the server returns less than the full set of search results then there should be text to the left of
the More button saying "xxx results of yyy shown" and the More button should be enabled.
The More button will fetch more results to be appended to the end of the list.

The client initially displays the results in the order returned by the server to allow the server to be
clever about ranking results. The user can of course sort the results by any of the fields shown.

The search box is not cleared, this allows the user to edit the text and send again.

The buttons for "File Clubs", "Images" and "Videos" are initially checked and can be unchecked to
restrict what gets returned.

Add Local Files Panel

NPT AR A

JEE b

s

us-cawcl! jpg

¥ bus-card2.gif

(] bus-cardz.ai

(] bus-card3.ai
Nbus-catrd3.gif
i %

There are all
kinds of medels
of carsin here.
Checkout th

be "Add
Local Files"

The drop-down on the right allows selection of one of the user's file clubs.
The New Folder button on its right goes to the New File Club panel.
The panel on the right lists all the files in the File Club.

The group of file selection items on the left are standard windows items behaving in the
normal way. One or more files can be selected at a time.



US 2002/0049760 Al Apr. 25, 2002
168

"Add to" will add the files selected to the File Club, and should be greyed out when none are
selected.

Cancel will cancel an adding operation.

Below the selection boxes are two preview windows which will show the most recent file
selected on either side.

"Remove'" removes the highlighted file or files from the File Club, it should be grey when none
are selected.

File Club Info Panels

aCl u'lﬁnf o

There are sotme awesome pictures of
Pokemon masters in this FileClub! There's
even one of....

Right-Click menus on clubs.
If the File Club is owned by this user then the editable version is shown.
The FileClub panel contains the Name, the Description, Number of images and videos, Content-

Rating, Last Modified Date, and (not shown) the Owner and whether subscribed or not and whether
public or private.

File Info Panel



US 2002/0049760 Al Apr. 25, 2002
169

| File Info

file and selects Info.

If the File is in a Collection belonging to this user then the editable version is shown, otherwise the
non-editable version is shown.

The panels show the Name, Description, Size, Type. The non-editable panel also shows if a Local

Copy exists. This is also shown for the editable version, which is incorrect.The panels also show
if the File is adult. (not shown on screen shots).

New File Club Panel

3’ Create Hew FileClub This panel is shown when the user clicks New File

b Club on the File Clubs panel or from the FileClubs

P menu or clicks the New-Folder icon in the Add

{‘ Local Files Panel. It allows for entry of a Name and
Description, Whether its public or Private, and a

ating,

[
i
i

| When OK is hit, this should create a directory, but
othing should be sent to the server until some files
¢ added to the FileClub.

confirmation dialog should be shown.



US 2002/0049760 A1l Apr. 25,2002
170

View Panel

Werefer to  JEEFENEIN-IN,
the list of
files as the
media file
set in the
comments
below. This
panel
logically
contains two
sets of
information
and

associated
with the
media files
and that
associated
with
comments
that relate to |
the media
files.

The view
panel displays a single Media file, but with an assumption that the file is part of a list, and therefore it
is possible to move backwards and forwards through the list.

The panel is reached from anywhere that a user selects one file from a list, specifically: the File List

Changes from image shown.

e Place a Delete button next to the Add-To button.

o From Beta-1: Add a line under description for a checkbox for Subscription

o So the vertical order is now ... FileClub Name; FileClub description; Number of images and
videos; Subscription; Drop down and Addto and delete;

Media File Presentation

The chosen file is presented using a viewer chosen by the following algorithm: Mitra:ToDo - spec
algorithm describe future



US 2002/0049760 A1l Apr. 25,2002
171

From Versionl: The client will be smart about pre-downloading the images and comments, for
example it might sequentially fetch files and comments in the direction the user is clicking, or fetch
comments for a range of files.

User Interface

¢ Video Controls

o For at least Beta-0 we will use the Video controls that come with Windows standard API
calls.

o The control and progress bar only appears on the video

o The progress bar should stretch as the panel is stretched, i.e. it should go from the
buttons all the way to the edge on the right.

o Moving the Progress bar around should change the position in the video (save for a later
version if this is tough).

o Play button turns into Pause "||" when it is playing, pressing pause stops the play but
leaves the position at the same place and the button turns back to Play.

o The Stop button causes it to stop and reset to the beginning.

The buttons have different images for depressed, which Beverly will send,

If possible, the description should be editable if the files are your own.

o The "->" and "<-" buttons cause the next, and previous media files of the media fiie set to be
displayed. These buttons loop around between the first and last images. Space, tab, right and
down arrow should shortcut to next while shift-tab, up and left-arrow should shortcut to
previous.

» If "Random" is checked then the slideshow should pick files in a random order.

The “Slideshow" button cycles through the media file set displays the next media file after N

seconds.

o N is initially a constant, (from Beta-3 it is set in preferences)

o It should display the first one immediately. '

o When depressed, it should change text to Stop.

o Next "<-" and Previous "->" should be changed to Faster and Slower, and cause
the speed of presentation to speed up or slow down.

o Random should be disabled.

There is a drop-down menu of the file clubs. One of these can be selected. When one has been
selected the "Add to A File Club” button is activated, and when clicked, causes the media file
displayed to be added to a file club. This occurs on the client machine, and then appropriate
Upload_Collection messages are sent to the server.

o File Clashes: When a user tries to do this, there are four possible cases:

1. There is a file there with the same hash and the same name: In this case do
nothing, but tell the user. Status="File xxx was already in File Club yyy"

2. There is a file there with the same hash, but a different name: Do nothing, tell the
user it is there already, and what name it has. Status="File xxx was already in Club
yyy with the name zzzz"

3. There s a file with the same name, but different hash: Give the user the choice of
overwriting the old file, or of selecting a new name to store this image as.

4. There is no clash: Just store the file. Display status="File xxx added to File Club

"

» The Delete Button when pressed should delete the file from this computer, and if it is



US 2002/0049760 A1l Apr. 25,2002
172

currently showing your own collection should remove from the collection.

o Version 1: The "Collections” button goes to the File Clubs panel with a list of collections this
file is a member of.

e Beta-3. The "Next:" label occurs over a thumbnail of the next media file to be displayed.

e When "Send to a Friend" button is pressed the "Send to a Friend" dialogue appears:

o There is an indication of which file (X) out of the total number (Y) is being presented.

« Potential future plans .... The "View Full Screen” button (Not shown in screen shot) opens the
Full Screen mode with this image.

Comments Presentation and Maintenance (right side)
This portion of the screen provides comments on the media file currently being shown.
As a media file is displayed, the comments, that are associated with that media file, are displayed on

the "Comments" panel in the order returned by the server, which is roughly reverse-chronological

order i.e. most recently entered first, but may vary if comments for this file are retrieved from other
collections.

Until Beta-3, once comments are read for a file, they will not be reread until for some other reason the
client requests file information on the file.

From Beta 3: The client and server will have to be smart about when to update comments. Mitra
ToDo - spec this

Each comment has: user id, date of posting and the text of the comment. If there are more comments
than there is space for, then scrolling will display them.

The commenter ids are active. If the member clicks on the commenter id, the File Clubs window is
opened showing the Collections of the commenter.

There is a "Post Comments" text entry window for new comments. When the "Post" button is pressed
the comments in the "Post Comments" text field (if not null or blank) are posted to that media file,
using the Post_Comment message, and immediately displayed at the top of the list of comments.

User Interface Icons etc

Some of the icons etc used here, with the depressed versions as well, are ....

Slide Bar, background is ~ Slide

(R77.G77,B77) button Pause Stop Play Next Previous
Send to a Friend
This is reached R Send Message

when "Send to a
Friend" is clicked
in the View panel.

i Tied —



US 2002/0049760 Al Apr. 25,2002
173

in the View panel.

Add an arrow
that when i :
clicked adds s

| really fike this image.

cute

names from
address book to
comma
seperated list in
To: field.

The same media
file that is
presented on the
View Panel,
appears in the
presentation area
of this panel. The
member can type
in a new e-mail
address in the
"To:" field and/or can select any other friends of the list (ListBox) to the right. The member enters a
subject which should not be null and can add comments (optional).

‘When the Send button is pressed, the Send Message command is sent.

Ifit fails, then the panel is represented with the error addresses highlighted and a message telling the
user to change them.

If it succeeds, then any newly entered email address is added to the address book. The panel then
disappears and the View Panel reappears with the same media file displayed.

Inbox Panel

shows a list
of
messages
for the user.

differences
from what
Mty Tyrone 0480412000 pichure frarn kunst stoff show is shown
Image
should be
on right,
list and
text on

Dete: Wed, 05 Apr 2000 23:29:36 -0700

Frar Acrian Sentt cardrian@mnnlazniunrams



US 2002/0049760 Al Apr. 25, 2002
174

text on

To: beverly tang <b @subliminacoms
Subject Re: beverly o do list

Hey Adrianl Take 2 ok at the picture | tock at the
kunst stoff show last nite! ltwas so great! You should
go check out their next show! message it

Date sent,
| j
» | messages
that are

unread are shown in Bold.
The list box is 2D scrollable with resizable and sortable columns.
The vertical and horizontal seperators between components should be adjustable.

Clicking on a selected message in the Inbox Panel opens it in the lower panel. "From", "Date",
"To" and "Subject” at the top, and then thetext accompanying the message.

There should be a button for Delete, and button and drop-down for adding to a fileclub, and a
button for Send-To-A-Friend. These behave the same as for the View Panel.

Help Us Panel

The feedback panel is made active by pressing the "Help Us" button. This goes to a browser window
at a pre-defined URL. As much useful information as possible should be embedded in this URL, for
example, userid, which panel active, which collection, which file. prior ta Beta-4 this will be a
common browser window, after it will be an HTML, conirol embedded in the client.

This URL will contain an HTML screen that requests feedback.
Web Grabber Panel

The Web
Grabber
grabs
images off
a Web site.

Changes
from :
screen shot |

- this
change to
view files




US 2002/0049760 A1l Apr. 25,2002
175

view files
can wait
till Beta-1

- use two
spinners
with text
"ton in
middle.

The files
should be |
placed in a
File Club
with a
name being that of the URL, and initially set to Private. There should be a progress bar to show how
it is doing. Clubs created like this are NOT shared.

From Beta-2: Since the URL is likely to be from an already open browser window, the client should,
if possible, look in the Browser cache for images first.

Change Password Dialog

This dialog appears when the user selects
"Change Password" from the tools menu.

The user has to enter their Old password, and
the new one twice.

Forgot Password works as it does on the Login
screen.

When Submit is hit then.

If the New and Confirmed passwords don't
match then the user should be prompted to re-enter them.

If the Old Password doesn't match that saved then the user should be prompted to re-enter it.

Otherwise the message is sent to the server (as an authenticated registration request). The status line
should be updated and the dialog closed.

Copyright Dialog
Do not implement this yet

client stores the copyright status on all the files. The client displays dialog saying



US 2002/0049760 A1l Apr. 25,2002
176

Problem file information

AppleSoup has been notified that
one or more of the files on your
disk, and/or in one of your
collections is illegal. These files
may no longer be transfered using

AppleSowp.
View§ HandlejjIgnore Remove§
Files|| later || this _|the files|

The dialog should say illegal for reason=3 and copyright for reason=2

View Files should open them in the Viewer with < and > cycling through the files

Handle Later should just ignore this message - the user will be notified next time they log in.
Ignore this should ignore the message and record that the user has already been notified so
that the message can be ignored in future.

Remove the files should delete from the disk and any collections.

Help should go to a predefined URL

http:/fwww.applesoup.com/help/copyright notification.jsp?hash=1a2b3c&reason=2

Full Screen Mode

Future Plans - not to be implemented yet.

shown full-screen with all the user-interface hidden. Clicking, or Right-Clicking on the screen will
bring up control buttons (Bev to supply design) as will using any key not specified as a shortcut.
Initially base these buttons on those in the View Panel, but replace "View Full Screen' with
"Exit Full Screen".

In Full Screen Mode it should not cycle to the next image until the image has been downloaded.
Windows Integration (From Betal)

Its is AppleSoup's goal to encourage people to use AppleSoup by making it easy to work with their
existing applications, for example Windows Explorer, IE, HTML editors, ete etc. To achieve this,
tight integration with Windows is needed. As many of the following as possible should be
implemented.

o Button on IE, that when pushed opens the Web Grabber panel with the URL filled in from that
of the page being viewed in IE.

¢ Right Click on an image in IE, the user should have the option to Add the image to a
AppleSoup file club.

 Right Click on an image in AppleSoup (View or FileClubs or Inbox or WebGrabber), the user
should:

o if they have the appropriate editors registered for that mime type - be able to Edit it in



US 2002/0049760 A1l Apr. 25,2002
177

their image editor

o be able to do a "Send To" as in Windows Explorer

o be able to Copy
Drag an image or a HTML file or a shortcut from any of:

o IE, Windows Explorer, or any other standard windows situation

o onto AppleSoup in the System Tray or directly into a File Club
Dragging an image out of AppleSoup into a Windows application - for example into Explorer,
or an editor, or MS Word.
Ctrl-C or Right-click followed by Copy on a file in either the View panel or any of the listing
panels (File List, or Search)
¢ Citrl-V or Right-click Paste into a File Club or View panel.
« Note that however a file is added, the rules specified under View Panel for File Clashes apply.

Some of these may not be possible, and there may be other obvious integrations with Windows.
On a Mac or Linux similar, but different conventions should be followed.

System Tray

‘When operating from the System Tray, then a minimal Ul is available.

Clicking or Double-Clicking on the Icon should open the AppleSoup Application.

When a message arrives for the user, then the icon should change to: =

Right-Clicking on the Icon brings up a menu.

o Disconnect (or Connect): Causes the connection to be dropped, or opened
¢ Open AppleSoup: Opens the Ul
¢ You have xx Messages: Shows how many messages are waiting to be viewed.

File and Data storage Structures
The AppleSoup client keeps information on the client in a number of locations.

o C:/Program Files/AppleSoup (default overridable at install time), contains all executables, and
other files installed by the installer that have nothing to do with the data. Files in here should
not be changed after the install, except when an upgrade is performed.

¢ Windows Registry containing a set of parameters for the client.

o [HKEY CURRENT USER\Software\AppleSoup]
"AppleSoup"="C:\Program Files\\AppleSoup"
"ClublistPath"="C:\AppleSoup\\Clubs"
"Download"="C:\Applesoup\\Downloads"
"Server'="128.12.1.44"

"Port"="80"
"ListenerPort"="3300"

"Language"="EnglishUS"
e C:/AppleSoup (default overridable at install time) contains all data related to the application.
o index.xml - file containing information on the collections, description etc.



US 2002/0049760 A1l Apr. 25,2002
178

= This file should also contain the list of friends.

» In the live version, it can be a hidden file.

» The client team have freedom to specify this file as fit, based on the XML
structures transferred from the server. After Beta the example file should be
attached here.

o "Downloads" directory contains all the files retrieved from the server

» tajmahal.gif - typical file

u tajmahal.02.gif - another file with the same name

a tajmahal.thumb.gif - a thumbnail of tajmahal.gif (Beta3)

» tajmahal.02.thumb.gif - a thumbnail of a secondary file (Beta3)

o "Clubs" directory containing one subdirectory named for each of the local FileClubs
= "India" - a typical FileClub
» clephants.jpg - a typical file

| ActiveX Controls

Control Selection Criteria

We will want to use some third-party controls. Let's use the following criteria to guide the selection
of controls:

¢ Standardness and Reliability -- e.g. use Microsoft standard controls where possible

e Low file size -- where possible we want to keep the file sizes low

o Simplicity -- we don't need controls that do everything. For example, in some cases there are
Microsoft controls that do everything but there are other Microsoft or non-Microsoft controls
that do most of what we need with a much smaller file size and reduced, but adequate, feature
set.

Controls Needed
We should research and select third-party controls for the following capabilites, where possible:

» Displaying images -- jpeg, gif and animated gif. The AnimGif OCX used in the prototype may
meet our needs here.

» Viewing videos -- avi, mpeg and if easy MOV. The MCI API calls may meet our needs here.

» MDS5 hash value generation -- these has values are used to uniquely identify the media files.

» HTTP & SSL communications -- presumably we can use Microsoft controls for this. We
should research this -- particularly whether it'll handle SSL encryption and whether it'll handle
persistent HTTP1.1 connections and HTTP1.0 Keep-Alive connections.

Communications Protocol

The AppleSoup client will communicate with the AppleSoup server and other AppleSoup clients
using a TCP/IP communications protocol. This protocol will wrap each information transfer in a
suitable transmission envelope. The design of this envelope is defined in the Communications

Generally an outgoing request message will contain certain data elements which are wrapped in the



US 2002/0049760 A1l Apr. 25, 2002
179

request envelope. The data elements will consist of a request type and other data. In response the
server will reply with a message that contains a response type and associated data items.
(Consequently a fuller understanding of the client can be obtained by reading the Server specification
Document in conjunction with this document).

One implication of the design is that the client should have a listening process that waits for messages
coming from another client.

Some specific aspects of functions are described below. Others are described above along with the
panel they refer to.

Get_File

The client has to both generate and respond to Get_File commands, it should be listening on the
specified port for incoming Get_File commands. The Requesting Client generates a simple GET to
the first Supplying Client listed.

GET /get_file?hash=1234567781212332321432
Host: client.applesoup.com
Accept-Lanuage: en, fr;q=0.5

Note that the "Host" field here is faked!

The supplying client checks to see if it has this file, in both the Downloads directory and any
Collections. If it has the file then it returns it as a standard HTTP response containing the file.

If the file is not available, or if the file is marked copyright > 0 (whether deleted or not) or there is
some other problem then a HTTP error code 404 should be returned to the requesting client.

On success, the Requesting Client stores the resulting file in the downloads directory, and sends a

location offered.

From Version 1: If there are no more possible locations then the Client should notify the User
(presuming this is not some automatic transfer) and then store the fact that this file was requested. At
some future time, the Client can re-request from the server a list of locations to try for this file.

From Version 1: After receiving a list of locations, the selection process could involve in the future
sending an ICMP (ping) packet to each of the top "n" potential locations, and using the return time (as
well as the connection speed) as part of the decision of which to try a Get_File with.

Alternative methods of reaching clients behind firewalls will be explored later, for now we will
assume that a client behind a proxy can only receive but not serve files.

Installation Procedures

The installation works in several steps.



US 2002/0049760 Al Apr. 25,2002
180

First on a new client, a user downloads an installer. This installer is a self-extracting Zip file which
contains:

o asmall (~20k) .exe containing just the main( ) for the installer

» a.dll containing the classes that support download and installation.
o This will be statically linked with MFC for a size of approx 280KB
o These classes will also be used by AppleSoup for updates

o This does not include a fancy background for the installer, which would have added
another 200+KB

¢ a.ini containing information on what versions of what modules are needed.

The installer will launch and ask:

¢ where it should be installed defaulting to: C:\Program Files\AppleSoup
« where it should place shared media files, defaulting to C:\AppleSoup\Clubs
o where it should store downloaded media files, defaulting to C:\AppleSoup\Downloads

These values are stored in the Registry for future use.

The installer will check for each module whether its "Must" be present, and what the version of any

current copy is. It then presents a dialogue box to the user showing each module group and
checkboxes for each module. The checkboxes are filled in as follows.

Must=6 ‘ Must=1
The module is optional, for The module is required for
example language fonts or a successful functioning of
______ viewer AppleSoup
No version on the user's unchecked, and may be changed by
machin | auser who wants to add this
ine functionality.
T L D A L e checked and cannot be changed. !
Version older than . checked, if the user unchecks the %
Required version box, then they are warned that this
e e || may effect functionality.
Versu&(l;ﬁz;::; than checked but can be unchecked by the user with no warning.
Current Version unchecked, but can be checked by the user if they wish to reinstall for

Some reason.

There are a few exceptions to the above simple rules.

The Anigif control for viewing images.
o The installable checks whether the Web Browser control is installed on the users machine.
How?

« Ifinstalled, we do not download the cab file for "Anigif control"(control for viewing images)
and create a registry entry in HKCU\Software\AppleSoup with a value "UseWebBrowser = 1".



US 2002/0049760 A1l Apr. 25,2002
181

o If not installed, we download the "Anigif control” and set the "UseWebBrowser=0".

¢ Depending upon the value set for "UseWebBrowser" the application will decide whether to use
the Web Browser or the Anigif control.

e Note that there is a currently unsolved problem with the Web Browser control that the image
cannot be resized, until solved the Anigif control will always be downloaded.

The file Resources.dll contains the text etc for buttons, and is language dependent, if it needs to be
downloaded, then the Installation procedure will allow the user to select precisely one of the available
language options.

The installer will check whether the needed MFC .dll's are present on the user's machine, if they are
then smaller versions of some of the files will be downloaded, otherwise files with staticly bound
MEFC calls will be downloaded. TODO: Research is happening to determine how frequent it is that
these files are available, for example on Win98 it is possible that they are always available.

The installation module will then fetch the .cab files for the modules checked, decompress and install
them and delete the temporary files. It will then start AppleSoup.

TODO: The Software Update functionality will be changed after a bit more research to allow the
server to specify when new versions are available and provide the ".ini" information to the client, so
that the AppleSoup client can then update itself.

Future versions of the AppleSoup client will allow the client to spot the Unicode range of comments
and prompt users when they need to install language fonts.

Future versions of the AppleSoup client will spot unknown media types, query the server for
available viewers, prompt the user and then download new viewers.



US 2002/0049760 Al

1. A method for accessing information in a peer-to-peer
network, the peerto-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, the method comprising:

selecting a first information file;

generating, using fingerprinting algorithm, a first finger-
print ID relating to the content of the first information
file; and

identifying the first information file using the first finger-
print ID.

2. The method of claim 1 wherein the fingerprinting
algorithm corresponds to an MD5 Message-Digest algo-
rithm.

3. The method of claim 1 wherein the fingerprinting
algorithm corresponds to a Secure Hash Algorithm (SHA1).

4. The method of claim 1 wherein the first information file
is stored at a first peer device, and wherein the first infor-
mation file has an associated first filename, the method
comprising:

storing the first filename and first fingerprint ID at the first

peer device.

5. The method of claim 4 further comprising: transmitting
the first filename and the first fingerprint ID to the database
system for storage therein.

6. The method of claim 5 wherein the database system
corresponds to a remote database system.

7. The method of claim 1 further comprising:

selecting a second information file having content iden-
tical to the first information file;

applying the fingerprinting algorithm to the content of the
second information file to thereby generate an identical
first fingerprint ID to that of the first information file;
and

identifying both the first and the second information file
using the first unique fingerprint ID.

8. The method of claim 7 wherein the first information file
is stored at a first peer device, and has a first associated
filename, and wherein the second information file is stored
at a second peer device, and has a has second associated
filename, the method further comprising:

storing the first associated filename and first fingerprint ID
associated with the first information file in the database
system; and

storing the second associated filename and first fingerprint
ID associated with the second information file in the
database system.

9. A method for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective fingerprint ID associated therewith relating to its
file content, the method comprising:

Apr. 25, 2002

182

transmitting a first message to the database system, the
first message including a search request for locating
files in the network which match a first search string;
and

receiving a first response from the database system, the
first response including first information relating to
identified files stored in the network which match the
first search string;

the first information further including an associated fin-
gerprint ID for each identified file.
10. The method of claim 9 further comprising:

transmitting a second message to the database system, the
second message including a first fingerprint ID selected
from the first information; and

receiving a second response from the database system in
response to the second message;

the second response including second information, the
second information including at least one network
address corresponding to at least one peer device that
has been identified as having access to at least one file
corresponding to the first fingerprint ID.

11. The method of claim 10 further comprising:

transmitting a third message to a first peer device of the
at least one peer devices, the third message correspond-
ing to a request to retrieve a first file identified by the
first fingerprint ID.
12. The method of claim 11 wherein the third message
includes the first fingerprint ID.
13. The method of claim 11 further comprising:

receiving at least a portion of the file content of the first
file from the first peer device in response to the third
message.

14. A method for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective fingerprint ID associated therewith relating to its
file content, the method comprising:

transmitting a first message to a first peer device, the first
message corresponding to a request to retrieve a first
file identified by a first fingerprint ID, wherein the first
message includes the first fingerprint ID, and wherein
the first fingerprint ID is different than a filename
associated with the first file; and

receiving a first portion of the file content of the first file
from the first peer device in response to the first
message.

15. The method of claim 14 further comprising:

detecting a failure in a file transfer process associated with
the first peer device;

identifying a second portion of the first file content which
has not been received; and

transmitting a second message to a second peer device,
the second message corresponding to a request to



US 2002/0049760 Al

retrieve the second portion of the first file content
identified by the first fingerprint ID, wherein the second
message includes the first fingerprint ID.

16. A method for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the method comprising:

receiving file information from selected peer devices, the
file information relating to shared files stored at each of
the selected peer devices;

the file information including a filename for each shared
file, and including a HASH ID for each shared file;

storing the file information in at least one data structure at
the database system; and

identifying a desired shared file in the network using its
associated HASH ID.

17. The method of claim 16 further comprising identify-

ing an identity of a peer device using a selected HASH ID;

wherein the identified peer device has been identified as
storing a file having an associated HASH ID which
matches the selected HASH ID.
18. The method of claim 16 further comprising identify-
ing a network address of a first peer device using a selected
HASH ID;

wherein the first peer device has been identified as storing
a file having an associated HASH ID which matches
the selected HASH ID.

19. A method for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the method comprising:

receiving a first message from a first peer device, the first
message including a search request for locating files in
the network which match a first search string;

generating a first response to the first message, the
response including a first list of file records relating to
files stored in the network which match the first search
string, wherein each file record includes an associated
HASH ID and an associated filename; and

providing the first list of file records to the first peer
device.
20. The method of claim 19 further comprising:

excluding from the first list of file records duplicate
records in which multiple file records have the same
associated HASH ID and filename.

Apr. 25, 2002

21. The method of claim 19 further comprising:

receiving a second message from the first peer device in
response to the first response, the second message
including at least one HASH ID;

identifying, using said at least one HASH ID, at least one
network address corresponding to at least one peer
device which has been identified as storing at least one
file corresponding to the at least one HASH ID; and

providing, to the first peer device, a second response, the
second response including address information which
includes at least a portion of the at least one identified
network addresses.

22. A method for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the method comprising:

identifying a first network addresses corresponding to a
first peer device which has been identified as storing a
first information file associated with a first HASH ID;

identifying a second network addresses corresponding to
a second peer device which has been identified as
storing a second information file associated with the
first HASH 1D;

transmitting a first message to the first peer device
requesting a first portion of file content of the first
information file from the first peer device; and

transmitting a second message to the second peer device
requesting a second portion of file content of the second
information file from the second peer device.
23. The method of claim 22 wherein the first and second
messages each include the first HASH ID.
24. The method of claim 22 wherein the first and second
messages are initiated at substantially a same time
25. The method of claim 22 wherein the requesting of the
first portion of file content from the first peer device occurs
concurrently with the requesting of the second portion of file
content from the second peer device.

26. The method of claim 22 further comprising:

receiving the first portion of file content from the first peer
device;

receiving the second portion of file content from the
second peer device;

generating a third information file which includes the first
and second portion of file content, wherein the file
content of the third information file is identical to the
file content of the first information file.

27. The method of claim 22 further comprising:

detecting a failure in a file transfer process associated with
the first peer device;



US 2002/0049760 Al

identifying a third network addresses corresponding to a
third peer device which has been identified as storing a
third information file associated with the first HASH
ID;

transmitting a third message to the third peer device, the
third message corresponding to a request to retrieve the
first portion of file content from the third information
file.
28. The method of claim 22 wherein the first portion of
file content corresponds to a first chunk of bytes 1 to N of
the first information file; and

wherein the second portion of file content corresponds to
a second chunk of bytes N+1 to 2N of the second
information file.

29. A method for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the method comprising:

requesting from a first plurality of peer devices a respec-
tive portion of file content from a respective informa-
tion file, each respective information file being identi-
fied as having identical file content and having an
identical first HASH ID being associated therewith.
30. The method of claim 29 further comprising:

receiving from at least a portion of the first plurality of
peer devices respective portions of file content from the
respective information file; and

reconstructing the respective portions of file content to
assemble a requested information file having file con-
tent identical to that corresponding to the first HASH
ID being associated therewith.

31. The method of claim 29 further comprising:

before requesting a respective portion, creating a content
map of the file content associated with the first HASH
ID, said content map parceling the file content into
respective portions from 1 to M.

32. The method of claim 31 further comprising:

assigning at least one respective portion, from 1 to M, to
a first peer device of the first plurality of peer devices
to request retrieval thereof.

33. The method of claim 32 further comprising:

receiving from the first peer device the one respective
portion, from 1 to M, of file content from the respective
information file; and

upon retrieval of the entire one respective portion from
the first peer device, updating the content map corre-
sponding to the retrieval thereof.

34. The method of claim 33 further comprising:

upon retrieval of all respective portions, from 1 to M, of
file content, reconstructing the respective portions to
assemble a requested information file having file con-

Apr. 25, 2002

tent identical to that corresponding to the first HASH
ID being associated therewith.
35. The method of claim 29 further comprising:

identifying the network addresses corresponding a first
plurality of peer devices, from 1 to X, each of the first
plurality of peer devices being identified as storing a
respective information file, each having identical file
content and having an identical first HASH ID being
associated therewith;

36. The method of claim 35 further comprising:

before requesting a respective portion, creating a content
map of the file content associated with the first HASH
ID, said content map parceling the file content into
respective portions from 1 to M, where M>X.

37. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, the system comprising:

at least one CPU
memory

at least one interface for communicating with other
devices in the peer-to-peer network;

the system being configured or designed to select a first
information file;

the system being further configured or designed to apply-
ing a fingerprinting algorithm to the content of the
selected file to thereby generate a first fingerprint ID
relating to the content of the first information file; and

the system being further configured or designed to iden-
tify the first information file using the first fingerprint
ID.

38. The system of claim 37 wherein the fingerprinting
algorithm corresponds to an MD5 Message-Digest algo-
rithm.

39. The system of claim 37 wherein the fingerprinting
algorithm corresponds to a Secure Hash Algorithm (SHA1).

40. The system of claim 37 wherein the first information
file is stored at a first peer device, and wherein the first
information file has an associated first filename; and

wherein the system is further configured or designed to
store the first filename and first fingerprint ID at the first
peer device.

41. The system of claim 40 being further configured or
designed to transmit the first filename and the first finger-
print ID to the database system for storage therein.

42. The system of claim 41 wherein the database system
corresponds to a remote database system.

43. The system of claim 37 being further configured or
designed to select a second information file having content
identical to the first information file;

the system being further configured or designed to apply
the fingerprinting algorithm to the content of the second
information file to thereby generate an identical first
fingerprint ID to that of the first information file; and



US 2002/0049760 Al

the system being further configured or designed to iden-
tify both the first and the second information file using
the first unique fingerprint ID.

44. The system of claim 43 wherein the first information
file is stored at a first peer device, and has a first associated
filename, and wherein the second information file is stored
at a second peer device, and has a has second associated
filename;

the system being further configured or designed to store
the first associated filename and first fingerprint ID
associated with the first information file in the database
system; and

the system being further configured or designed to store
the second associated filename and first fingerprint ID
associated with the second information file in the
database system.

45. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective fingerprint ID associated therewith relating to its
file content, the system comprising:

at least one CPU
memory

at least one interface for communicating with other
devices in the peer-to-peer network;

the system being configured or designed to transmit a first
message to the database system, the first message
including a search request for locating files in the
network which match a first search string; and

the system being further configured or designed to receive
a first response from the database system, the first
response including first information relating to identi-
fied files stored in the network which match the first
search string;

the first information further including an associated fin-

gerprint ID for each identified file.

46. The system of claim 45 being further configured or
designed to transmit a second message to the database
system, the second message including a first fingerprint ID
selected from the first information; and

the system being further configured or designed to receive
a second response from the database system in response
to the second message;

the second response including second information, the
second information including at least one network
address corresponding to at least one peer device that
has been identified as having access to at least one file
corresponding to the first fingerprint ID.

47. The system of claim 46 being further configured or
designed to transmit a third message to a first peer device of
the at least one peer devices, the third message correspond-
ing to a request to retrieve a first file identified by the first
fingerprint ID.

Apr. 25, 2002

48. The system of claim 47 wherein the third message
includes the first fingerprint ID.

49. The system of claim 47 being further configured or
designed to tsb receive at least a portion of the file content
of the first file from the first peer device in response to the
third message.

50. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective fingerprint ID associated therewith relating to its
file content, the system comprising:

at least one CPU
memory

at least one interface for communicating with other
devices in the peer-to-peer network;

the system being configured or designed to transmit a first
message to a first peer device, the first message corre-
sponding to a request to retrieve a first file identified by
a first fingerprint ID, wherein the first message includes
the first fingerprint ID, and wherein the first fingerprint
ID is different than a filename associated with the first
file; and

the system being further configured or designed to receive
a first portion of the file content of the first file from the
first peer device in response to the first message.
51. The system of claim 50 being further configured or
designed to detect a failure in a file transfer process asso-
ciated with the first peer device;

the system being further configured or designed to iden-
tify a second portion of the first file content which has
not been received; and

the system being further configured or designed to trans-
mit a second message to a second peer device, the
second message corresponding to a request to retrieve
the second portion of the first file content identified by
the first fingerprint ID, wherein the second message
includes the first fingerprint ID.

52. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the system comprising:

at least one CPU
memory

at least one interface for communicating with other
devices in the peer-to-peer network;



US 2002/0049760 Al

the system being configured or designed to receive file
information from selected peer devices, the file infor-
mation relating to shared files stored at each of the
selected peer devices;

the file information including a filename for each shared
file, and including a HASH ID for each shared file;

the system being further configured or designed to storing
the file information in at least one data structure at the
database system; and

the system being further configured or designed to iden-
tify a desired shared file in the network using its
associated HASH ID.
53. The system of claim 52 being further configured or
designed to identify an identity of a peer device using a
selected HASH 1D;

wherein the identified peer device has been identified as
storing a file having an associated HASH ID which
matches the selected HASH ID.
54. The system of claim 52 being further configured or
designed to identify a network address of a first peer device
using a selected HASH ID;

wherein the first peer device has been identified as storing
a file having an associated HASH ID which matches
the selected HASH ID.

55. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the system comprising:

at least one CPU
memory

at least one interface for communicating with other
devices in the peer-to-peer network;

the system being configured or designed to receive a first
message from a first peer device, the first message
including a search request for locating files in the
network which match a first search string;

the system being further configured or designed to gen-
erate a first response to the first message, the response
including a first list of file records relating to files stored
in the network which match the first search string,
wherein each file record includes an associated HASH
ID and an associated filename; and

the system being further configured or designed to pro-

vide the first list of file records to the first peer device.

56. The system of claim 55 further being further config-
ured or designed to exclude from the first list of file records
duplicate records in which multiple file records have the
same associated HASH ID and filename.

57. The system of claim 55 being further configured or
designed to receive a second message from the first peer
device in response to the first response, the second message
including at least one HASH ID;

186

Apr. 25, 2002

the system being further configured or designed to iden-
tify, using said at least one HASH ID, at least one
network address corresponding to at least one peer
device which has been identified as storing at least one
file corresponding to the at least one HASH ID; and

the system being further configured or designed to pro-
vide, to the first peer device, a second response, the
second response including address information which
includes at least a portion of the at least one identified
network addresses.

58. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the system comprising:

at least one CPU
memory

at least one interface for communicating with other
devices in the peer-to-peer network;

the system being configured or designed to identify a first
network addresses corresponding to a first peer device
which has been identified as storing a first information
file associated with a first HASH ID;

the system being further configured or designed to iden-
tify a second network addresses corresponding to a
second peer device which has been identified as storing
a second information file associated with the first
HASH ID;

the system being further configured or designed to trans-
mit a first message to the first peer device request a first
portion of file content of the first information file from
the first peer device; and

the system being further configured or designed to trans-
mit a second message to the second peer device request
a second portion of file content of the second informa-
tion file from the second peer device.
59. The system of claim 58 wherein the first and second
messages each include the first HASH ID.
60. The system of claim 58 wherein the first and second
messages are initiated at substantially a same time
61. The system of claim 58 wherein the request of the first
portion of file content from the first peer device occurs
concurrently with the request of the second portion of file
content from the second peer device.
62. The system of claim 58 being further configured or
designed to receive the first portion of file content from the
first peer device;

the system being further configured or designed to receive
the second portion of file content from the second peer
device; and

the system being further configured or designed to gen-
erate a third information file which includes the first
and second portion of file content, wherein the file



US 2002/0049760 Al

content of the third information file is identical to the
file content of the first information file.
63. The system of claim 58 being further configured or
designed to detect a failure in a file transfer process asso-
ciated with the first peer device;

the system being further configured or designed to iden-
tify a third network addresses corresponding to a third
peer device which has been identified as storing a third
information file associated with the first HASH ID;

the system being further configured or designed to trans-

mit a third message to the third peer device, the third

message corresponding to a request to retrieve the first

portion of file content from the third information file.

64. The system of claim 58 wherein the first portion of file

content corresponds to a first chunk of bytes 1 to N of the
first information file; and

wherein the second portion of file content corresponds to
a second chunk of bytes N+1 to 2N of the second
information file.

65. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the system comprising:

at least one CPU
memory

at least one interface for communicating with other
devices in the peer-to-peer network;

the system being configured or designed to request from
a first plurality of peer devices a respective portion of
file content from a respective information file, each
respective information file being identified as having
identical file content and having an identical first
HASH ID being associated therewith.

66. The system of claim 65 being further configured or
designed to receive from at least a portion of the first
plurality of peer devices respective portions of file content
from the respective information file; and

the system being further configured or designed to recon-
struct the respective portions of file content to assemble
a requested information file having file content identi-
cal to that corresponding to the first HASH ID being
associated therewith.

67. The system of claim 65 being further configured or
designed to create, before request a respective portion, a
content map of the file content associated with the first
HASH ID, said content map parceling the file content into
respective portions from 1 to M.

68. The system of claim 67 being further configured or
designed to assign at least one respective portion, from 1 to
M, to a first peer device of the first plurality of peer devices
to request retrieval thereof.

69. The system of claim 68 being further configured or
designed to receive from the first peer device the one

Apr. 25, 2002

187

respective portion, from 1 to M, of file content from the
respective information file; and

the system being further configured or designed to update,
upon retrieval of the entire one respective portion from
the first peer device, the content map corresponding to
the retrieval thereof.

70. The system of claim 69 being further configured or
designed to reconstruct, upon retrieval of all respective
portions, from 1 to M, of file content, the respective portions
to assemble a requested information file having file content
identical to that corresponding to the first HASH ID being
associated therewith.

71. The system of claim 65 being further configured or
designed to identify the network addresses corresponding a
first plurality of peer devices, from 1 to X, each of the first
plurality of peer devices being identified as storing a respec-
tive information file, each having identical file content and
having an identical first HASH ID being associated there-
with;

72. The system of claim 71 being further configured or
designed to create, before request a respective portion, a
content map of the file content associated with the first
HASH ID, said content map parceling the file content into
respective portions from 1 to M, where M>X.

73. A computer program product for accessing informa-
tion in a peer-to-peer network, the peer-to-peer network
including a plurality of peer devices and a database system
accessible by at least a portion of the peer devices, each of
the peer devices being configured to store information files,
and further being configured to share content from selected
information files with at least a portion of the other peer
devices in the network, the computer program product
comprising:

a computer usable medium having computer readable
code embodied therein, the computer readable code
comprising:

computer code for selecting a first information file;

computer code for generating, using fingerprinting algo-
rithm, a first fingerprint ID relating to the content of the
first information file; and

computer code for identifying the first information file
using the first fingerprint ID.

74. The computer program product of claim 73 wherein
the fingerprinting algorithm corresponds to an MD5 Mes-
sage-Digest algorithm.

75. The computer program product of claim 73 wherein
the fingerprinting algorithm corresponds to a Secure Hash
Algorithm (SHA1).

76. The computer program product of claim 73 wherein
the first information file is stored at a first peer device, and
wherein the first information file has an associated first
filename, the computer program product comprising:

computer code for storing the first filename and first
fingerprint ID at the first peer device.
77. The computer program product of claim 76 further
comprising:

computer code for transmitting the first filename and the
first fingerprint ID to the database system for storage
therein.



US 2002/0049760 Al

78. The computer program product of claim 77 wherein
the database system corresponds to a remote database sys-
tem.

79. The computer program product of claim 73 further
comprising:

computer code for selecting a second information file
having content identical to the first information file;

computer code for applying the fingerprinting algorithm
to the content of the second information file to thereby
generate an identical first fingerprint ID to that of the
first information file; and

computer code for identifying both the first and the
second information file using the first unique finger-
print ID.

80. The computer program product of claim 79 wherein
the first information file is stored at a first peer device, and
has a first associated filename, and wherein the second
information file is stored at a second peer device, and has a
has second associated filename, the computer program prod-
uct further comprising:

computer code for storing the first associated filename and
first fingerprint ID associated with the first information
file in the database system; and

computer code for storing the second associated filename
and first fingerprint ID associated with the second
information file in the database system.

81. A computer program product for accessing informa-
tion in a peer-to-peer network, the peer-to-peer network
including a plurality of peer devices and a database system
accessible by at least a portion of the peer devices, each of
the peer devices being configured to store information files,
and further being configured to share content from selected
information files with at least a portion of the other peer
devices in the network, wherein each shared file in the
network has a respective fingerprint ID associated therewith
relating to its file content, the computer program product
comprising:

a computer usable medium having computer readable
code embodied therein, the computer readable code
comprising:

computer code for transmitting a first message to the
database system, the first message including a search
request for locating files in the network which match a
first search string; and

computer code for receiving a first response from the
database system, the first response including first infor-
mation relating to identified files stored in the network
which match the first search string;

the first information further including an associated fin-
gerprint ID for each identified file.

82. A computer program product for accessing informa-
tion in a peer-to-peer network, the peer-to-peer network
including a plurality of peer devices and a database system
accessible by at least a portion of the peer devices, each of
the peer devices being configured to store information files,
and further being configured to share content from selected
information files with at least a portion of the other peer
devices in the network, wherein each shared file in the

Apr. 25, 2002

188

network has a respective fingerprint ID associated therewith
relating to its file content, the computer program product
comprising:

a computer usable medium having computer readable
code embodied therein, the computer readable code
comprising:

computer code for transmitting a first message to a first
peer device, the first message corresponding to a
request to retrieve a first file identified by a first
fingerprint ID, wherein the first message includes the
first fingerprint ID, and wherein the first fingerprint
ID is different than a filename associated with the
first file; and

computer code for receiving a first portion of the file
content of the first file from the first peer device in
response to the first message.

83. A computer program product for accessing informa-
tion in a peer-to-peer network, the peer-to-peer network
including a plurality of peer devices and a database system
accessible by at least a portion of the peer devices, each of
the peer devices being configured to store information files,
and further being configured to share content from selected
information files with at least a portion of the other peer
devices in the network, wherein each shared file in the
network has a respective HASH ID associated therewith
relating to its file content, the HASH ID being different from
a respective filename associated with each file, the computer
program product comprising:

a computer usable medium having computer readable
code embodied therein, the computer readable code
comprising:
computer code for receiving file information from

selected peer devices, the file information relating to
shared files stored at each of the selected peer
devices;

the file information including a filename for each
shared file, and including a HASH ID for each shared
file;

computer code for storing the file information in at least
one data structure at the database system; and

computer code for identifying a desired shared file in
the network using its associated HASH ID.

84. A computer program product for accessing informa-
tion in a peer-to-peer network, the peer-to-peer network
including a plurality of peer devices and a database system
accessible by at least a portion of the peer devices, each of
the peer devices being configured to store information files,
and further being configured to share content from selected
information files with at least a portion of the other peer
devices in the network, wherein each shared file in the
network has a respective HASH ID associated therewith
relating to its file content, the HASH ID being different from
a respective filename associated with each file, the computer
program product comprising:

a computer usable medium having computer readable
code embodied therein, the computer readable code
comprising:
computer code for receiving a first message from a first

peer device, the first message including a search
request for locating files in the network which match
a first search string;



US 2002/0049760 Al

computer code for generating a first response to the first
message, the response including a first list of file
records relating to files stored in the network which
match the first search string, wherein each file record
includes an associated HASH ID and an associated
filename; and

computer code for providing the first list of file records
to the first peer device.

85. A computer program product for accessing informa-
tion in a peer-to-peer network, the peer-to-peer network
including a plurality of peer devices and a database system
accessible by at least a portion of the peer devices, each of
the peer devices being configured to store information files,
and further being configured to share content from selected
information files with at least a portion of the other peer
devices in the network, wherein each shared file in the
network has a respective HASH ID associated therewith
relating to its file content, the HASH ID being different from
a respective filename associated with each file, the computer
program product comprising:

a computer usable medium having computer readable
code embodied therein, the computer readable code
comprising:

computer code for identifying a first network addresses
corresponding to a first peer device which has been
identified as storing a first information file associated
with a first HASH 1ID;

computer code for identifying a second network
addresses corresponding to a second peer device
which has been identified as storing a second infor-
mation file associated with the first HASH ID;

computer code for transmitting a first message to the
first peer device requesting a first portion of file
content of the first information file from the first peer
device; and

computer code for transmitting a second message to the
second peer device requesting a second portion of
file content of the second information file from the
second peer device.

86. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files

Apr. 25, 2002

189

with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the system comprising:

means for identifying a first network addresses corre-
sponding to a first peer device which has been identi-
fied as storing a first information file associated with a
first HASH 1D;

means for identifying a second network addresses corre-
sponding to a second peer device which has been
identified as storing a second information file associ-
ated with the first HASH ID;

means for transmitting a first message to the first peer
device requesting a first portion of file content of the
first information file from the first peer device; and

means for transmitting a second message to the second
peer device requesting a second portion of file content
of the second information file from the second peer
device.

87. A system for accessing information in a peer-to-peer
network, the peer-to-peer network including a plurality of
peer devices and a database system accessible by at least a
portion of the peer devices, each of the peer devices being
configured to store information files, and further being
configured to share content from selected information files
with at least a portion of the other peer devices in the
network, wherein each shared file in the network has a
respective HASH ID associated therewith relating to its file
content, the HASH ID being different from a respective
filename associated with each file, the system comprising:

means for receiving a first message from a first peer
device, the first message including a search request for
locating files in the network which match a first search
string;

means for generating a first response to the first message,
the response including a first list of file records relating
to files stored in the network which match the first
search string, wherein each file record includes an
associated HASH ID and an associated filename; and

means for providing the first list of file records to the first
peer device.



